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CHAPTER 1. INTRODUCTION 

Problem Description 

Research has been conducted at the Iowa State University Center for Nondestructive 

Evaluation (CNDE) to create a structure in which existing numerical modeling programs can be 

converted to execute in a network computing environment. This research task is to include the 

development of an extensible architecture which accommodates the timely integration of new 

processing capabilities and requirements. The research was motivated by many needs within 

the CNDE to reduce the predicted run times associated with the current and future model in)! 

programs. 

The project is to demonstrate the feasibility of adapting existing Fonran programs to the 

Network Computing Architecture (NCA). The primary goal is to create an application layer 

architecture with a limited set of external interfaces which exploits the opportunities for parallel 

processing within the existing CNDE computing environment. Parallel processing in the nati vc 

CNDE environment is complicated by the fact that neither Fortran, i.e., f77 nor the NCA itself 

has any constructs for expressing program parallelism. Further, the NCA facilities for 

identifying potential computation servers provide insufficient information to evaluate candidates 

on the basis of expected throughput. A ,dedicated low performance computation server may 

have better throughput than a fully loaded high performance server. Additional logic is needed 

to estimate performance based on processing power and the current computation load on the 

prospective server. A secondary goal of this new architecture is to create a higher level of 

functional abstraction which shields the CNDE software developers from some of the details of 

the underlying networking issues such as node addressing. 

This thesis briefly discusses the analysis process for the existing programs. The 

objective of the analysis is to identify which program regions to implement in parallel in order 

to leverage the most performance gain. The major thrust of this thesis is directed toward the 
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design objectives and implementation of an application layer architecture which supports 

parallel processing in the CNDE computing environment. Toward this end, system issues 

such as fault tolerance, software partitioning, and scheduling considerations are addressed in 

subsequent sections. 

Proposed Solution 

The proposed solution for creating the application layer architecture is to augment 

standard commercial packages with local enhancements to provide the necessary degree of 

robustness, adaptability, and extensibility. The standard commercial packages include the 

Network Computing System (NCS) and utilities for evaluating current serial program 

behavior. Robustness is achieved through the implementation of a uniform program fault 

handling strategy and exploiting host operating system features to control multiple computation 

servers from one master process. Adaptability is provided so that the system can respond to 

changing conditions on the network hosts such that high throughput servers are favored over 

heavily loaded servers and unresponsive servers are automatically eliminated from 

consideration for future tasks. Extensibility is a gray area which means that relatively few 

software mooifications are required to integrate new functions into this architecture. 

The system model for the proposed solution is a master/ multiple slave paradigm to 

implement a divide and conquer strategy. This strategy implies that the problem can be totally 

partitioned into sets of independent calculations which may be performed in parallel. 

Borrowing a term from Jordan, each set of calculations will be called a chore f 13]. For 

example, consider a Fortran DO loop in which each iteration of the loop body does not 

destructively interfere with any other iteration. The overall problem becomes a many to many 

mapping of the chores to the number of servers. When the number of chores is less than the 

number of active servers, the system attempts to get the earliest possible completion time at the 

expense of processor resource utilization. This means that if a server becomes idle before the 
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entire job has completed but after all of the chores have been assigned to servers, the idle server 

is redundantly assigned the same chore as an already active server. When any server completes 

this chore, all other redundant servers working on the same chore have their operation 

cancelled. When the chore is aborted, partial results are discarded thus wasting the aborted 

server's processor resources. 

An overview of the run-time processing scenario is now described. A computation 

server program is started on several network nodes. Each instance of the server operates 

independently and typically runs as a background daemon. A multiprocessor node may have 

more than one instance of a particular server program. The client may either use all available 

servers to perform a given function or limit the set of active servers to be the most capable 

ones. Each active server independently and concurrently computes operations as requested by 

the client. When all chores have been computed, the client resumes normal serial processing 

until another opportunity for parallelism arises. 

The enhancements developed for this project exist at three levels: UNIX pnx:esses, 

object libraries, and source code. The process is a daemon which runs on all participating 

nodes to monitor the load on its host and report when the load changes significantly. The 

object library contains utility functions such as server utilization accounting functions and 

server comparison functions for use in sorting routines. The NIDL and C language source 

code will be expanded as new functions are added. Expansions may be required to 

accommodate new interface definitions and provide proper processing of the new function 

argument lists. 

The process of adapting existing software to run in the network computing environment 

begins with an analysis of the current application behavior. The objective of the analysis is to 

identify regions of the program which may be safely implemented in parallel. The software 

conversion process entails defining the client and server processing requirements, defining the 
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interface between the client and server(s), and implementing any special handling routines that 

are required as a result of parallel computation. 

Definitions 

Some definitions are required in order to establish the proper context for the remainder of 

this document. The term network computing means a computational system in which rhe 

hardware and software components are distributed on a local area network. It is an extension 

to conventional distributed processing in that this network computing model supports multiple 

active servers operating in a coordinated fashion. It is also a form of loosely coupled parallel 

processing since each processing element has its own processor and memory resources and in 

this case, each has its own copy of the operating system. This contrasts to a special purpose 

multiprocessor hardware architecture which is composed of tightly coupled high perfom1ance 

processors such as a Connection Machine. A Network Supercomputer refers to a collection of 

high performance workstations which are interconnected via a local area network. It is 

characterized by a large aggregate computation capacity, large distributed memory, and a very 

large, perhaps variable communication latency. By this definition, the CNDE computing 

environment is a network supercomputer. 

The term grain size arises in the discussion of parallel processing systems. The grain size 

reflects the minimum size of the program executed on each of the processors which is sufficient 

to overcome the increased overhead of coordinating the parallel processes. In general, 

multiprocessors are categorized as fine grain systems meaning that the overhead is relatively 

low. A network computing systems is categorized as a medium to coarse grain architecture. 

A client or master is a program which controls or consumes computational resources. It 

is used in tandem with a server or slave program which provides the resources. Typically in 

this discussion, the server is strictly a software entity though in some places it may refer to the 
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host on which the program resides. The meaning is clear from the context. For this project, all 

clients and servers communicate via the NCS Remote Procedure Call (RPC) mechanism. 

All software for this project was developed on Apollo Computer Inc. workstations. The 

operating system for these workstations is a proprietary product called Domain!OS. 

Domain/OS has a built in capability which allows the creation of multiple independent lfzreads 

of execution within one process. Each thread is called a task; the original thread is called the 

distinguished task (DT). Tasks can be created with much less overhead than a process 

creation. Also, since all of the tasks exist within one virtual address space, inter-task 

communication is more efficient than inter-process communication. A task is the Domain/OS 

implementation of a light weight process. 

Evaluation Plan 

The software developed for this project is a subset of a much larger CNDE development 

effort. Virtually all of the software developed for this project is written in C. The stmcture and 

algorithms presented herein are to be tested for two sample applications. The first is a C 

language program in which each scanline of a mandelbrot image is computed independently. 

The second application is a Fortran program which solves a set of linear equations in complex 

variables. The actual integration of this project software into the larger CNDE project is for 

future development. 

Document Structure 

This thesis is organized into chapters. Chapter 2 provides some general background on 

the current CNDE computing environment and discusses the underlying network computing 

architecture in detail. It compares this environment to other distributed computing models 

currently being developed elsewhere. Chapter 3 discusses some of the analysis techniques and 

design decisions for implementing a distributed program. Architecture implementation details 
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are discussed .in Chapter 4. Chapter 5 reports the results obtained from RPC overhead 

measurements and timing the sample programs. Chapter 6 contains a summary and 

discussion. By convention, all UNIX commands, file names, and library function names 

referenced in the text will appear in the Courier font. 
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CHAPTER 2. BACKGROUND 

There are many varieties of Network Computing Systems in the commercial and research 

communities. It is an attractive technology for two main reasons: 1) high performance servers 

can be easily accessed from low performance workstations, and 2) spreading the computation 

load among under-utilized nodes has great potential for increasing system throughput. The 

NCA objectives and implementation are described in the next section. Following that, other 

systems are described and compared to the NCA. 

Current CNDE Network Computing Environment 

The current CNDE network computing environment is composed of various models of 

workstations manufactured by HP/ Apollo Computer Corp. At the low end of the computation 

power spectrum, there are three model DN2500 CISC microprocessor based workstations and 

at the high end, there is one model DN10040 which contains four proprietary RlSC 

processors. In total, there are 13 HP/ Apollo nodes; their configuration is shown in Table l. 

Table 1. CNDE Apollo Node Configuration Summary 

Model Quantity CPU RAM (MB) Monitor Disk (MB) MIPS 
DN2500 3 M68030 16 M 1280xl024 210 4 
DN3500 1 M68030 8 C 1024x800 (2) 380 5 
DN4500 1 M68030 16 C 1280xl024 380 8 
DN4500 7 M68030 16 C 1280x 1024 760 8 
DN10040 1 (4) PRISM 64 C 1024x800 (2) 697 22 each 
Totals: 13 N/A 246 N/A 8484 155 

All of the workstations are inter-connected via an intra-building thin wire Ethernet local 

area network. The Ethernet cable plant is physically configured as a star topology with a set of 

active repeaters at the center of the star. Valid packets which appear on one segment of the star 

are rebroadcast on all other segments. Thus, a logical bus topology is created. One of the 

spokes from the star leads to a bridge which filters traffic to and from the ISU main campus. 
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A consequence of this configuration is that the CNDE Ethernet is free of interference as noted 

by the absence of packet checksum errors. Also, statistics from the bridge indicate that the 

network on the CNDE side of the bridge has a very low nominal loading. Figure I is a 

diagram of the network topology. 

The current version of the workstation operating system is Domain/OS Release l 0. 2. 

Both BSD and SysV variants of UNIX are layered on top of Domain/OS. The Domain/OS 

Concurrent Programming Support (CPS) package facilities for maintaining multiple threads of 

execution within one process are thread creation, tennination, and synchronization. 

Each Apollo workstation communicates via both DDS and TCP/IP communication 

protocols over Ethernet. The DDS is an Apollo proprietary protocol which provides services 

for all Domain/OS internode communication. The typical TCP/lP services are name service, 

routing, telnet, ftp, and electronic mail. NCS Applications may employ either or both 

protocols. 

The Network Computin~: Architecture 

The Network Computing Architecture (NCA) is an architecture for distributing software 

applications across heterogeneous computers and networks [3, 15]. The detailed architecture 

specifications are found in [2, 24]. The HP/Apollo implementation of NCA is called the 

Network Computing System (NCS). NCS defines a request- response protocol and the 

packet formats to create a layer of reliable communication on top of a network layer which 

provides unreliable datagram services. A connectionless network protocol was selected to 

minimize RPC overhead and make NCS applications viable on hosts which do not support 

connection oriented protocols. The Berkeley socket abstraction is used to access the network 

layer. Figure 2 shows the NCS protocol layers with a cross reference to the lSO/OSI 

communication model layers. The principal NCS components are the RPC, the Network 

Interface Definition Language (NIDL) compiler, the location brokers, and the task broker. 
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Figure 2. NCS Protocol Layers 
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NCS is used extensively in the Domain/OS daemons which manage user authorization, printing 

services, and file system backup. NCS is also the foundation for the software architecture 

developed and described herein. 

The NCS Computation Model The NCS computation model is object based. 

Resources are characterized as objects. For example, a set of functions which manipulate 

matrices could be an object. Objects in turn are categorized by type and manipulated through a 

set of operations. An interface is composed of a set of related operations. Servers are 

constructed to as collections of objects. A server is said to export all interfaces associated with 

its object types. A client places a RPC to a server which is known to export the desired 

interface. 

The RPC is the basic element of the NCS computation modeL The RPC mechanism 

allows a client program on one host to contact a server program resident on another host 

through an interface which appears to be a local procedure call. ln reality, the client function 

call transfers program control to the client stub routine. The stub routine accesses the RPC 

run-time library to assemble the function arguments into network packets and transmit them to 

the remote host. There, the server stub routine accepts the data, unloads the network packets, 

and invokes the intended server function. Results are returned through an inverse process. On 

the Apollo, this model can be extended through the use of CPS functions. CPS can be applied 

to NCS such that a client may define multiple tasks; each task may concurrently initiate a RPC. 

Concurrent RPC is the mechanism which supports parallel processing in this environment. 

The CPS functions were used extensively in the developed software. 

Though not exercised for this project, the NCS supports communication with 

heterogeneous vendor platforms via the Network Data Representation (NDR). If any data 
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representations are not consistent on a pair of communicating hosts, the receiver1 has enough 

information to translate received packets into the correct local format. Packets are always 

transmitted using "native" data formats. The receiver performs all data translations but only if 

they are necessary. This contrasts with the SUN implementation of RPC data representation. 

In that case, the sender and receiver always incur processing overhead as the data elements are 

convened to and from a neutral transmission representation even if the sender and receiver have 

the same native data representation [21]. NCS does not support explicit data typing on 

transmitted packets; only the actual value of the data are transmitted. All NCS data typing 

occurs when the interface is defined. 

RPC Details The basic single-threaded RPC mechanism is mature technology. Recent 

commercial implementations are based on the RPC framework presented by Birrell and Nelson 

[6]. A goal of any RPC system is to make distributed computing easy for the implementor. 

The ease of use stems from the appearance of making a normal local procedure call when in 

fact the remote server is actually performing the intended operation. 

A remote procedure call is intended to have the same behavior as a local procedure call. 

This dictates that the RPCs are blocking; program control is not returned until the server 

completes the request and returns the result. The RPC will reflect server run-time errors, for 

example a floating point exception, back to the client. In addition, the run-time library 

monitors the progress of a call so that it can detect and report host or network failures. The 

NCS mechanism for this function is a periodic ping and acknowledge packet exchange between 

the client and server. The ping frequency is adjusted with a binary exponential backoff scheme 

to a maximum interval of 1024 seconds [2]. The client and server are modeled as finite state 

lNote the distinction between client/server pairs and transmitter/receiver pairs. The client is the transmitter 
and the server is the receiver during the function activation phase. The client and server roles are reversed during 
the function return phase. 
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machines in the run-time library. The state machines handle possible network computing 

anomalies such as packet retransmissions and timeouts. 

Arguments to RPC functions must eventually be passed by value since a remote host 

cannot translate passed addresses in the proper context. The RPC interface definition may 

include parameters which appear to be passed by reference. In this case, the stub routines will · 

perform automatic de-referencing. A NCS RPC occurs in a presumed trusted environment. 

Nothing is encrypted and there are no passwords nor any other security checks associated with 

the call itself. Servers and clients are assumed to be started by authorized users. In 

comparison, the SUN RPC protocol includes selectable security such that the designer can 

choose from no authentication, UNIX authentication, or DES authentication [211. 

The NIDL Compiler The NCS NIDL compiler takes an interface definition as its input 

and generates the C language stub routines for the client and server. The NIDL defines the 

syntax of an interface definition. An interface definition is composed of the interface name, a 

universal unique identifier (UUID) for the interface, and a list of functions which are exponed 

through the interface. A UUID is a 16 byte binary string which encodes the hardware node id 

on which the UUID was created and a timestamp. Each listed interface function itemizes the 

data type and direction of each of its parameters. By convention, direction may be in to the 

server, out from the server or both. Simple data types e.g., integers and characters as well as 

aggregate data types, e.g., structures and arrays are supported. 

The stubs emitted from the NIDL compiler contain the software which redirects the local 

invocations to network transmissions. The stub routines also contain the software functions 

which marshall and unmarshall the RPC parameters. Marshalling is the process of packing the 

RPC parameters into network packets. The client stub is compiled and linked with the client 

application software. The server stub is compiled and linked to the server application. The 

NIDL compiler also generates a client switch stub file which allows for proper function name 
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translation in the case of a replicated application where the client may access some of the 

interfaces which it exports. Figure 3 depicts a typical compile and link process for clients and 

servers which are produced from Fortran, C, and NIDL source files. 

NCS Location Brokers The Location Broker daemons act as repositories for server 

registration information and as forwarding agents for client connection requests. The daemons 

have been implemented in two varieties: the Local Location Broker (LLB) and the Global 

Location Broker (GLB). A LLB services all server registration requests and client lookup 

requests for the local node. The GLB is used in conjunction with the LLB to resolve addresses 

which are not local to the requesting host. Typically, each node runs the LLB and just a few 

nodes run the GLB daemon. The GLB database is replicated among all network GLB 

daemons in a highly available, weakly consistent fashion. The I etc/ ncs/ lb n utility 

provided with the NCS release allows a user to display and/ or manually modify the contents of 

either the LLBD or the GLBD data base. 

A location broker entry is composed of the interface UUID, an object instance U U 10, an 

object type UUID, a globaV local flag, a free form text annotation field, a socket address length 

and a complete socket address which includes an address format identifier. The socket address 

format also implies the data communication protocol. An IP address format means IP protocol 

and a DDS format means DDS protocol. A server may have many location broker entries, one 

for each interface that it exports. 

If a server address is initially completely unknown to the client, as is usually the case in 

NCS, the client formulates a lookup request which encapsulates the desired server 

specification. The location brokers search their database for entries which match the request 
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specification. All entries which match the specification are returned to the requestor. The 

entries returned to the requestor are in no particular order. Single threaded clients would 

typically typically resort to using the first entry in the list. This is not a desirable characteristic 

if the objective is to minimize execution time and the some other entry in the list actually contain 

the location of a higher performance server. This deficiency is addressed in the project and 

discussed in Chapters three and four. 

If the client has partial information on the location of the intended server, i.e., it has only 

the host address but not the port, the RPC may be placed to the LLBD well known pon on the 

remote host. In this case, the LLBD acts as a forwarding agent and control is transferred to the 

intended server. When the RPC returns, the client will have the fully specitied address for use 

in subsequent calls to that same server. 

Task Broker The Task Broker is an additional HP/Apollo layeredproduct which is 

intended to provide some measure of network host load balancing. It is oriented toward batch 

programs which require no user input and do strictly file input /output [ 12]. A system manager 

must ensure that the programs are available on each prospective server and configure the Task 

Broker with information such as program processing requirements, the expected network 

activity, filenames, etc. When a user submits a program start request to the Task Broker, it 

queries potential servers for bids and selects the highest bidder. If no bids are received, the 

request is queued locally until a server becomes available. After a server successfully 

completes, all output files are copied back to the submitting host. This technology was deemed 

unacceptable in the CNDE environment because its batch orientation makes it quite inflexible 

and it requires the system manager to have a-priori knowledge of the processing requirements. 

Task broker has no provision for balancing computation loads which are data dependent. 
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Comparison to Selected Other Distributed Computing Environments 

Project Athena 

Project Athena is a seven year old cooperative effort between MIT, Digital Equipment 

Corp., and ffiM to develop a large scale heterogeneous computer system composed of 

networked workstations [8]. The individual workstations are merely the distributed hardware 

components of a larger system in which all resource allocation, security considerations, and 

access to services is handled not at the node but at the system and or network level. The 

Athena environment is essentially a layer of distributed services built on top of Berkeley Unix 

and the Network File System (NFS) from Sun Microsystems. Athena has dedicated server 

programs to handle user authorization and authentication, name service, system management 

service, file service, window management, etc. Some of the Athena service daemons are 

replicated to ensure high availability. 

Each user has access to the power of the workstation at which they are seated. The 

Athena system model does not include the concept of dedicated computation servers though the 

architecture accommodates heterogeneous workstations with disparate computation power. 

There is no direct support within Athena for parallel processing nor any automatic service to 

migrate compute intensive jobs to the most suitable computation engine. A user must be aware 

of the components of the network and submit jobs on capable computation servers which have 

been configured to accept requests from this user. 

Enterprise 

The Enterprise system for distributed task scheduling was developed at the Xerox Palo 

Alto Research Center [17]. It is intended to run on top of a remote process communication 

mechanism like RPC. The system scheduling is based on the concept of an agoric computing 

environment where servers "bid" for available work much like an auction in an open market. 
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Each server independently computes its bid. Bidding is based on server processor capacity, 

speed, network load, job characteristics, current location of data and related tasks. Enterprise 

implements a Distributed Scheduling Protocol (DSP) which specifies the sequence and contents 

of bidding messages. The typical message sequence is Announcemem, Bid, Award. A client 

broadcasts the Announcement which includes a description of the job and its priority. Idle 

servers respond immediately with a bid; busy servers enqueue the request and submit a bid 

when they become idle. An idle server selects queued requests based on the job priority in a 

FIFO fashion. A bid is essentially the server's estimate of the job completion time. 

Multiple server bids may arrive at the client. The client always awards the job to the first 

server from which it receives a bid. If another server submits a later bid which is significantly 

better than the bid received from the first server, the job will be resubmitted to this better server 

and aborted on the original server. 

Clients periodically request status from their active servers. If no response is obtained, 

the job is restarted elsewhere. Also, if the server does not get pinged periodically, it will 

autonomously abort the job with the assumption that the client has crashed. Enterprise has an 

estimation error tolerance parameter which is used to encourage reasonable estimated job 

completion times. A job which exceeds the estimated time by more than the error tolerance is 

aborted and restarted elsewhere. 

Enterprise has been implemented at Xerox in LISP. Testing has shown that the estimates 

of processing time need not be very accurate. Estimation errors of up to ±1 00% resulted in 

little performance degradation. As expected, dramatic performance improvements were noted 

in a test case in which the network was lightly loaded and the processors were moderately to 

heavily loaded. Even so, there was a steeply diminishing return on the benefit of increasing the 

size of the server pool beyond a fairly low limit of eight to ten servers. Communication delays 
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were found to be intolerable for lightly loaded processors as the delay became a significant 

percentage of the actual processing time. 

The server selection scheme for Enterprise is considerably different than that of NCS. 

There is a notion of expected server performance in Enterprise. The broadcast mechanism and 

the number of steps required to select the server detract from the elegance. 

Emerald System 

The Emerald System is a current research project at the University of Washington 1141. 

It is composed of a language and a run-time environment. Emerald supports distributed 

programs via objects which can transparently move between network nodes. Objects may 

either be static data structures or live processes. One of its goals is to achieve performance 

which is comparable to traditional RPC performance without adversely impacting the local 

operation performance. Emerald offers essentially the same set of advantages as does NCS: 

load balancing, simplified data movement, potential for enhanced run-time performance. 

Further, Emerald can reduce the interprocessor communication load by moving the 

communicating processes to the same node. In a traditional RPC environment, the caller is 

blocked while the server is executing the call. Within Emerald, the entire process moves to the 

remote node and continues execution. 

An Emerald object associates unique name with a data representation specification, a set 

of operations which may be performed on the object, and an optional process. The Emerald 

compiler is context sensitive such that it will produce different object implementations 

depending how an object is used; not all objects are assumed to be global nor mobile. The 

roving objects are located using a forwarding address. Each node has an access table which 

maps objects to residency. An access table entry is created for each object that has a remote 

reference. If an object moves, the source and destination nodes update their access table 
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forwarding address field for that object. No other nodes take any action. When other nodes 

require access to a remote object, they traverse the tree of access table forwarding addresses. 

The constraints for implementing the Emerald style mobility are more severe than for 

NCS. Emerald requires homogeneous nodes, i.e., trusted nodes with the same instruction set. 

In its current implementation, all Emerald processes resident on a single node are mapped into 

the same virtual address space. These restrictions make the Emerald approach unsuitable for 

the CNDE environment. 

PAX-1 

The PAX-1 product from VXM Technologies, Inc strives to create a network 

supercomputer in the VAX-VMS environment [16, 23]. PAX is an implementation of Linda­

C. Linda-Cis an extension to ANSI C which provides constructs for writing explicitly parallel 

programs. Carriero and Gelernter provide an excellent summary of the Linda model in their 

1989 paper [7]. In comparison to NCS, PAX is also suitable for medium to coarse grain 

parallel processing applications though it is not based on a RPC mechanism nor on a 

ubiquitous upper layer transport protocol such as TCP. It removes much of the overhead of 

interprocessor communication by directly utilizing the Ethernet data link layer. 

P AX-1 processes interact via tuples stored in a distributed shared memory called tuple 

space. Tuples are ordered sets of parameters which may be either active data structures, i.e., 

processes or they may be passive data structures. Only passive tuples are currently supported 

in PAX. Tuples may contain wildcards which specify data types but not actual values. Tuple 

space is accessible from all nodes in a PAX-1 network. Tuple operations are: out. to insert an 

entry into the tuple space; in, to retrieve a tuple from tuple space; rd, to read a tuple but the 

tuple is not removed from tuple space. Out operations are non-blocking. If no matching tuple 

exists when an in is attempted, the requestor will block until a match appears. If more than one 

match exists, the one returned is chosen non-deterministically. If more than one server is 



www.manaraa.com

21 

blocked on an attempt to in the same tuple, their eventual service ordering is non-detenninistic. 

This implies that the algorithm used to award the tuples to the servers is not "fair"; some server 

may never be activated. 

Servers will typically in a tuple which matches their template. If a match is found, it is 

removed from the tuple space, operated upon, and a new tuple is inserted. The client posts 

several entries into the tuple space requesting some service and waits for the results to be 

asynchronously posted back into the tuple space by a set of servers. The client has no 

knowledge of the server locations or even the number of servers. Additional servers may be 

added to the network to dynamically increase the system throughput. In a future version of 

PAX, it will handle heterogeneous vendor platforms, incorporate support for UN IX, and offer 

transparent data translation between systems. One shortcoming in the implementation is an 

inability to detect a server crash after it has removed a tuple but before it has posted the 

resulting tuple. A developer must explicitly handle this case with a timer and a signal handler 

function to prevent the client from blocking on an in which will never occur because the server 

has crashed. 

The ISIS program is a current research and commercial project at the Cornell University 

[5]. It is a library and development environment for distributed applications. A client may 

reference servers via an opaque data structure known as a process group name. The client need 

have no knowledge of the number of group members nor their location. The group 

membership can grow and shrink dynamically and a process may belong to arbitrarily many 

groups. ISIS requires lightweight tasking to implement some functions. In this context, an 

ISIS task looks like any other C function but with the distinguishing feature that the ISIS task 

can be invoked in response to events such as the receipt of a message. Multiple ISIS tasks may 

be executing concurrently. The task modules must be coded in a fashion to protect the global 
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variables from unintentional corruption by another executing task. ISIS guarantees that all 

process group members receive message events in the same order. Since the events appear in 

the same order, the group members are said to be virtually synchronous. This greatly 

simplifies the design of distributed applications. 

ISIS is well suited for controlling parallel processing applications which employ a divide 

and conquer strategy since one message can be simultaneously received by all servers which 

are members of a particular process group. Like NCS, ISIS also lacks a deterministic server 

selection mechanism. Future versions of ISIS will address noted problems with sluggishness 

and scaling difficulty. 
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CHAPTER 3. DESIGN CONSIDERATIONS 

The preceding chapter illustrated some of the differences in the capabilities of some 

network computing architectures. Some of the differences are viewed as deficiencies while 

others are desirable characteristics. In this chapter, I provide the framework for an architecture 

which is layered on NCS yet has some of the benefits of the other systems as well. The first 

section describes the assumption under which this design is intended to operate. Subsequent 

sections discuss the major components. 

Assumptions 

A divide and conquer strategy is not particularly applicable to some of the existing CNDE 

model software. Thus, a network computing solution is not appropriate for all of the CNDE 

computing needs. Such programs are not under consideration for this project. Often, 

sequential programs have sections which can be adapted to perform multiple independent 

calculations. These sections of code must be analyzed so that data dependencies are identified 

and removed so that the code within a section can be executed in parallel. Presently, this is 

largely a manual process. As a starting point for this process, commercial utilities are available 

which identify which routines should be modified to leverage the improvement offered by 

parallel processing. The UNIX utility for this purpose is prof. It displays the percentage of 

time that an application spends in its subroutines. This is exactly the type of information 

required but it doesn't work well on the Apollo. Instead, the Apollo utilities for program 

analysis are a layered product called the Domain Performance Analysis Kit (DPAK). DPAK is 

composed of the Histogram Program Counter (HPC) tool and the Domain Perfom1ance 

Analysis Tool (DPAT). HPC periodically samples the program counter while a program is 

executing. After the program completes, a histogram is displayed which indicates the 

frequency of the PC being in specified address regions. The DPA T operates by periodically 

sampling the program calVretum stack while a program is running. DPAT also records 
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parameters such as 1/0 activity and page faults. When the analysis is complete, the relative 

amount of time spent in each of the program functions is displayed. One can infer likely 

processing bottlenecks from this information. DPAK tools do not provide any advice on how 

amenable the functions are to parallel processing nor how to con vert them. 

Much has been written about tools to analyze and convert scientific Fortran programs to 

multiprocessor machines. Ottenstein gives a good survey of the techniques for detecting 

parallelism and he includes an extensive list of references in his 1985 paper [20]. The Kuck 

Analyzer Package (KAP) developed by Kuck and Associates, Inc. is a Fortran preprocessor 

which does a thorough dependency analysis to identify program regions which may be safely 

executed in parallel. Some versions of the KAP allow the user to specify a minimum amount 

of parallel activity which must be present in order to invoke the parallel code [22]. This is 

intended to be used to force sequential execution of loops which could be done in parallel bur 

should not because the overhead cost exceeds the gain of the parallel computation. 

A related design issue that must be addressed in a network computing environment is the 

proper selection of the client and server functional partitioning. The partitioning must retlect 

the architecture grain size. The overhead cost of doing a RPC is orders of magnitude greater 

than the cost of doing a local procedure call. This implies that to be effective, the client should 

make relatively few RPCs with relatively lengthy computations on the server such that the 

communication overhead becomes a small percentage of the overall execution time. In the 

Apollo environment, a local procedure call can take on the order of tenths of microseconds 

while a trivial RPC can take on the order of milliseconds. Both were measured by repeated! y 

performing null function calls in a tight loop. 

The client /server communication delay is variable since the underlying technology is 

Ethernet. Ethernet is known to perform best on lightly loaded networks. Some recent 

performance measurements by the Digital Western Research Laboratory have shown that 
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Ethernet performs quite well on more heavily loaded networks as long as the packet size varies 

[23]. Periodic samples of statistics collected from the CNDE Ethernet bridge have shown that 

under current conditions, the CNDE network is very lightly loaded. For problems of the 

appropriate grain size for this architecture, client/ server data communication latency relative to 

the server execution time is expected to be small. 

Finally, I assume that there is no requirement to augment the security of NCS 

transactions. Packet checksums are computed by the RPC run-time library to ensure the 

integrity of a received packet. Servers do not maintain lists of acceptable clients; all valid 

service requests are accepted. A server is designed to handle at most one active client. There is 

no requirement for logic to prevent interference from multiple concurrent server tasks within a 

server process. 

High Level Design 

Figure 4 depicts the run-time configuration of a generic application which consists of a . 

multi-threaded client and three servers distributed over three nodes. Each server program is 

started at boot time. The client program is started on demand much like the entire single 

threaded program is currently started. Both server nodes are running the Processor Loading 

Daemon (PLD) and the LLBD. A GLBD is present on the client node and one of the server 

nodes. The client program created two tasks. Each task communicates with a server via a 

RPC. 

During initialization, the server program queries the network nameserver to determine 

hardware information for the host on which it resides. The name server HINFO record for 

each host has been encoded with a processor performance metric. Currently, the metric in use 

is the host MIPS rating as supplied by the vendor specification data sheets. The server 

formulates a location broker registration entry which encapsulates the performance metric. 

After registering with the LLBD, the server enters a quiescent state awaiting RPC requests. 
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PLD: CNDE Processor Loading Daemon 
Client: CNDE Model User Interface (typical) 
Server: CNDE Model Computation (typical) 

Node B 

Dark Line: Remote Procedure Call path 
Light Line: Daemon data flow path 

Figure 4. General Distributed Processing Configuration 
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The PLD regularly measures the processing load on its host node. To reduce processing 

overhead, not every load calculation results in a LLBD update. The algorithm to update the 

LLBD is adapted from the algorithm used to propagate routing table updates in the ARPANET 

[18]. The LLBD is updated only if the load is "significantly different" from the loading the last 

LLBD update. The phrase "significantly different" means that the absolute value of the change 

in the PLD load is greater than some threshold. The threshold is a generally decreasing 

function of time which gets reset to its maximum value whenever a LLBD update occurs. After 

every PLD measurement interval, the threshold value is decreased. Eventually, the threshold 

could reach zero in which case an update will occur and the threshold will be reset regardless of 

the load change. This algorithm was selected because large changes in the load are reponed 

quickly and persistent smaller changes are reported eventually. If the load is significantly 

different from the previously reported load, the PLD will retrieve all LLBD entries which match 

its template type. If any entries are found, they are updated with the new load information and 

reinserted in the LLBD database. 

A user may manually update the LLBD entry annotation field to mark a server "off-line" 

via the I etc/ncs/ lb _ admin utility. If a server is marked off-line, the server will continue 

to process chores from the current client but future clients will not use this server. The use of 

this capability is limited to special situations such as a case where the machine is scheduled to 

go down for maintenance and an orderly server shutdown is desired. 

When a client program requests server location information from the LLBD, it 

automatically receives the processor performance metric and the processor loading infom1ation. 

No separate query is needed to determine the load. Also, note that the client does not use a 

broadcast mechanism to initiate the server selection process. 

The organization of existing CNDE modeling programs differs significantly from the 

organization which is required for this environment. The top section of Figure 5 shows a 
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Old Program Structure 

Program Initialization 

DO while 
Call computeAll( ... ) 

End do 

Display Results 

New Client Structure 

Client Initialization 

InitNCS 

DO while 
Call doPar(computeAllCode, ... ) 

End do 

SynchServers 

Display Results 

Figure 5. Program Structure 

New Server Structure 

Server Initialization 

Register Server with LLB 

Wait for RPC 

Switch (RPC) 
case computeAll: 

execute computeAll 
case otherFunction: 

end Switch 
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simple program which has an organization similar to current CNDE programs. It contains 

initialization functions, a main processing loop and a set of functions to display the results of 

the computation. In contrast, the lower section of the figure shows the high level organization 

of the server and client programs. The server program does its own initialization and waits for 

a RPC to arrive. When it does arrive, the RPC run-time library invokes the imended function 

and then returns the results to the client. The client program performs initialization and display 

functions. The computation load is shifted to the server with the three functions shown in 

boldface in the figure. 

The three callable functions are intended to easily identify and isolate the parallel regions. 

They also serve to mask the details of multi-threaded execution from the client application code. 

A call to the function initNCS identifies the desired functional interface and the requested 

number of servers. initNCS performs the location broker lookup, initial server selection. and 

starts a client task for each available server. A call to the doPar function identifies a set of 

parameters for a chore to be executed. The function doPar queues the chore and returns 

immediately without waiting for the chore to be processed by some server. A call to the 

syncServers function causes the client Distinguished Task to block while waiting for all client 

sub-tasks to complete. The sequence initNCS, doPar, and synchServers may be executed 

more than once within one program. 

The Server Selection Algorithm 

The server selection algorithm has two modes of operation: one during parallel 

processing initialization, i.e., during initNCS, and the other while a client is distributing chores 

to a set of active servers. In the first case, a server is thought to be superior if its perfonnance 

metric divided by the current load is greater than the corresponding ratio for another server. A 

LLBD query returns a set of server records. The server state, performance metric. and the 

current load information are extracted from entries encoded in the LLBD record annotation field 
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for each server. If the server state is marked off-line, that server is eliminated from further 

consideration. The ratio of performance metric to current load is computed for each potential 

server and the results are inverse sorted such that the highest ratio servers are listed first 

followed in decreasing order by lower performance workstations. This mode is used as an 

estimate of which servers will perform better. If the client call to initNCS limits the requested 

number of active servers, the LLBD list is trimmed on this basis. 

The second mode of server selection is actually a technique known as self-scheduling. In 

this case, the total client job to be processed in parallel is divided into a number of chores. The 

number of chores is initially large relative to the number of processing elements. Each server 

obtains a chore and when finished with that computation, it obtains and performs the next 

unassigned chore. Self-scheduling was selected because it automatically adapts to the run-time 

server response conditions and does not rely on potentially stale or irrelevant load infom1ation. 

The load information could be stale if a significant amount of time had elapsed since the 

initNCS function was invoked. In other words, current performance data is preferred over a 

guess based on the location broker information. The self-scheduling technique is more flexible 

than a pre-scheduled technique because the programmer does not need to manually try to 

balance the computation load. The pre-scheduling or a-priori load balancing technique was not 

used because it is not a viable method when the execution time for each chore can vary sharply 

because data dependencies may cause different conditional branch paths to be executed. Pre­

scheduling is also difficult to apply when the processing elements do not have uniform 

computation speed, as in this network. 

The server selection algorithm must include special logic to continue to dispense chores 

until all chores have been successfully completed. This means that near the end of processing, 

some servers will be assigned redundant chores. In other words, a presently active chore will 

be assigned to an idle server. All redundant servers are aborted when any server completes the 
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chore. This is necessary to prevent a client deadlock in the event that all servers except one 

have terminated normally and the last active server crashed while processing the last chore. 

The chore selected for redundant assignment is the chore presently assigned to an active server 

with the latest estimated completion time. The estimated completion time for each server is 

computed as the worst case chore processing time minus the time elapsed since the server 

started the current chore. This logic requires the client to keep a small amount of accounting 

history for each active server. Since the accounting information must be accessed by each 

client task, a critical section is declared to protect the accounting information from corruption 

by multiple writers. 

Figure 6 illustrates a server selection scenario which includes redundant chore assignment 

and a server abort. The server on the left processes chores much more quickly than the server 

on the right. Note that the gaps between server chores have been enlarged for diagram clarity. 

The server utilization would typically be much higher. 

The Chore Queue 

A temporary, dynamically allocated queue is used to spool the function arguments of 

doPar requests. The purpose is to allow the client DT to request service without causing it to 

block while waiting for the server to complete the request. The request is placed on the queue 

and control returns to the DT before a server has completed execution. ln addition to pointers 

to the previous and next queue entries, the queue entry contains a pointer to a structure which 

contains all of the necessary arguments to invoke the RPC. Queue entries may also be inserted 

during client task fault handling to ensure that the request is eventually serviced even though a 

particular server may have crashed before completing a request that it had previously removed 

from the queue. Queue entries are removed when a server becomes available to service another 

RPC as in the self-scheduling discussion above. 
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Figure 6. Server Selection Scenario 
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Within a DO loop, calls to subroutines may have more than one argument which depends 

on the loop index value. Either the complete set of function arguments can be temporarily 

stored and accessed when a chore is to be assigned or all arguments can be computed from the 

index value as the chore is being assigned. The queue mechanism was selected to facilitate 

easier integration into existing code. There is a cost for maintaining the queue which would be 

avoided if the alternate approach were taken. 

Fault Handling 

All fault handling for this project is implemented with the Portable Process Fault Manager 

(PFM) library routines. PFM is a builtin package for Domain/OS. On other platforms, the 

PFM is a subset of the NCA product distribution. The PFM is divided into two fault 

management mechanisms: cleanup handlers and fault handlers. The major difference between 

the two is that fault handlers can return to the point at which the fault occurred and cleanup 

handlers cannot. A cleanup handler will resume execution at the first instruction following the 

cleanup handler code in the source file. Normally a cleanup handler would be placed at the 

beginning of a function so that if a fault does occur, and it is deemed non-fatal, all of the 

statements in the function would be re-executed thereby resetting local variables. The handlers 

can be chained such that the most recently declared handler will execute first, followed if 

appropriate, by the next most recently declared, and so on. If the default system supplied fault 

handler is invoked, the entire process will terminate. The cleanup handler logic must be 

carefully crafted such that asynchronous signals such as SIGKILL or SIGQUIT still have the 

desired effect on the program. 

The project implementation exclusively uses cleanup handlers to simplify there­

initialization process after a fault has occurred. Each client and server program declares a 

cleanup handler. Further, each client task also defines its own cleanup handler. The RPC run-
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time faults are managed within the task. Unexpected faults, i.e., faults that cannot be handled 

are passed to the next fault handler in the chain. 

The client task cleanup handlers have been implemented to allow two types of faults. The 

first is an intentional server abort and the other is a NCS communications failure. A server will 

be intentionally aborted if the RPC results have already been returned by another server. NCS 

communication failures are treated as transient failures and the call is tried again. If a particular 

server gets too many communication failures, it is marked as "dead" and is no longer used for 

the current set of chores. The server process cleanup handler is mainly used to unregister the 

server from the location broker data base before the process terminates. This ensures that 

subsequent LLBD lookup requests will return only active servers. 

Cross Language Considerations 

The existing CNDE numerical model software is written entirely in Fortran. The 

software developed for this project was written in the C language for compatibility with the 

NIDL generated stub files which are also C source files. The two languages have some data 

representation incompatibilities. C has no native definition of complex variables; Fortran does. 

The simplest solution in C is to explicitly define a new type which is a structure composed of a 

floating point real component and a floating point imaginary component. The type double 

complex is defined similarly except that both structure elements are double precision. 

Fortran subroutine calls always pass parameters by reference. The C language supports 

parameter passing by value and by reference. All C functions which call Fortran subroutines 

must restrict argument passing to conform to Fortran conventions. By default, Fortran and C 

access array elements in a different order. Fortran is column major, i.e., complete columns are 

stored sequentially in memory. C array storage is row major. For this project, the storage 

arrangement is inconsequential since the C routines do not operate on the arrays passed to and 

from the Fortran subroutines. The consistent specification of an array starting address and the 
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number of elements is sufficient to allow proper communication from the client Fortran to C 

stub, then across the network and finally from the server C stub to server Fonran. 

In UNIX, the /bin/f77 Fortran compiler will append an underscore to any external name. 

This is important in the context of Fortran making a subroutine call to a C function. In order 

for the linker to resolve the function name, the C routine must have an explicit underscore 

appended to the function name since the C compiler does not do this automatically. For 

example, the Fortran statement "CALL initNCS( ... )" invokes a function which must be named 

initNCS_ in the C source file. Alternatively, on the Apollo the DOMAIN Fortran compiler 

(/com/ftn), does not append the underscore thus the C routines must not have it. There are no 

function naming incompatibilities for the reverse case of a C function calling a Fortran 

subroutine. 

Variable Argument Lists 

Variable argument lists are used to implement a consistent interface to the doPar function. 

The number, order, and the type of arguments to two distinct chore processing functions may 

be completely different yet it makes sense to have one function which handles all chore request 

queueing. The doPar function handles differences in calling semantics with a variable 

argument list declaration. It will accept any number of arguments of any type. The only 

restriction is that the first argument be an integer function code so that the rest of the argument 

list can be properly popped off the call/ return stack. The arguments must be pulled off the 

stack manually since the compiler has no knowledge of the programmer's intentions. In this 

application, the function code is the controlling variable in a switch construct. Within the 

switch, cases are defined for each function code. In each case, the arguments are known and 

they can be retrieved from the argument list and stored in a temporary stmcture. The address 

of the argument structure is copied to the queue element data field and the queue element is 

inserted on the chore queue. 
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CHAPTER 4. IMPLEMENTATION 

This chapter contains the detailed description of the software implemented for this 

project. First, the application layer support software is described. The support software 

includes the status and error logging utility functions, the processor loading daemon, the server 

initialization functions, and the client code to perform server selection and multi-tasking. The 

structure of the test programs is also described. 

Status and Error Logging Utility Functions 

The status and error logging functions were written to capture the output from programs 

which typically run in the background, i.e., the daemon and the servers. Both s t dou t and 

stderr file descriptors are redirected to program specific files in the /usr /tmp directory. 

The files are opened in the append mode so that the information from prior executions is 

retained. The errorLog function accepts a character string and writes it to the stder r with a 

timestamp. It is possible to follow the call to errorLog with a call to the C formatted output 

function fprintf to record additional information such as parameter values or trace text. All 

fault handlers implemented for this project use both mechanisms to record the time and the fault 

status code. The log message timestamp facilitates tracing a sequence of event messages on 

multiple nodesl; this has proven to be an invaluable debugging aid. The log files may be 

accessed while the associated program is running via the UNIX tail command. 

The Processor Loading Daemon 

The processor loading calculations are performed in a distributed autonomous manner. 

Each participating node executes its own instance of the daemon. The processor load 

information is periodically attained by spawning a shell which executes the BSD /bin/ csh 

command uptime. The uptime command produces a string which contains the processor 

lThis works to the extent that the individual node clocks are synchronized. All CNDE Apollo nodes run 
the UNIX time daemon (timed) for this purpose. 
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uptime, i.e., the elapsed time since the system was booted and the load averages for the 

preceding one, five, and ten minute intervals. The shell output is piped into the PLD which 

parses the string to obtain the one minute load average. This number represents a sliding 

average of the number of UNIX processes which were in the operating system run queue 

during the last minute. For this project, I assume that all users processes are running at the 

same priority since the UNIX priority mechanism is not well supported in Domain/OS. 

The load information is maintained by the host operating system. A more direct path to 

acquire the information from a bona-fide UNIX system is to read it from the UNIX system 

table via the psuedo-device I dev /kmem instead of spawning a shell process l9J. This device 

is not available in Domain/OS. An undocumented and unsupported alternative on the Apollo is 

the procl_$get loadav system call which returns the required information but it is subject 

to change without notice. Thus, the awkward shell mechanism was selected for 

implementation because it is the only supported means to acquire the desired information on the 

Apollo. 

The cndeType has been defined as a particular static UUID. When a server implemented 

in this project registers with the LLBD, it must do so with the object type field set to the 

cndeType. The PLD formulates a single LLBD query for all cndeType entries to obtain records 

for all relevant servers and exclude those LLBD records which are not maintained by the PLD. 

From a purely organizational point of view, it may desirable at some point in the future to 

declare and process additional LLBD object types. At present, one object type is adequate for 

the test application programs. 

The 64 character LLBD entry annotation field is partitioned into five text sub-fields for 

this project. The length and organization of the sub-fields is shown in Figure 7. The PLD 

information is inserted into the load sub-field for each record received from the LLBD. Each 

LLBD entry is re-registered to cause a location broker database update. 
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Object UUID uuid_$t 

16 bytes 

Object Type UUID uuid_$t 

16 bytes 

Interface UUID uuid_$t 

16 bytes 

Global/ Local Flag ulong 

4 bytes 

Annotation char 

64 bytes 

Socket Address Length ulong 

4 bytes 

Socket Address socket_$addr_t 

DDS: 12 bytes, IP: 8 bytes 

Legend: 
T: Token 2 bytes 
L: Load 5 bytes 
B: Blank 1 byte 
P: Performance 2 bytes 
S: State 2 bytes 
E: Terminator 1 byte 

..._ Text 
50 bytes 

Figure 7. LLB Entry Record Annotation Field Encoding 
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The current PLD update algorithm implementation specifies a load sample interval of 30 

seconds and the maximum threshold value value is one job. After a measurement period, the 

threshold is decremented by an amount that ensures that the threshold value will reach zero 

after 300 seconds have elapsed. This means that at least one update will occur every five 

minutes. In comparison, the ARPANET routing table update algorithm implementation has a 

ten second measurement interval and at least one update will occur every minute [ 18]. The 

values were selected as a first guess at reasonable parameters for a quasi-static system. The 

parameter values which were selected may be adjusted as the run-time environment becomes 

known; this tuning process remains for future development. 

An additional duty imposed on the PLD is to detect and remove LLBD entries which have 

become invalid. When the PLD initializes itself and about once per day, it verifies that the 

entries retrieved from the LLBD are valid by performing a NCS rrpc_ $are_you_there () 

query to the server address listed in the LLBD entry. If the server does not respond within the 

NCS timeout period, the entry is deleted from the location broker database. Each server 

developed for this project declares a cleanup handler which will remove the server's entries 

from the location broker database when the program terminates. This handler may not get an 

opportunity to run if there is a catastrophic node failure such as a shutdown induced by a local 

power outage. The PLD ensures that the old LLBD entries are removed when the node and the 

PLD are restarted. 

The PLD has been implemented with a selectable level of detail recorded in the program 

log messages. When enabled, the messages are written to stderr which is directed to a file 

as described above. There are three levels of logging. Level zero indicates that only fault 

information and no status information is to be written to the log file. Level one means basic 

information is recorded and level two means detailed traces are to be recorded. By default, 

level zero is enabled. In the spirit of the BIND server selectable logging mechanism, the levels 
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can be adjusted while the program is running by delivering UNIX s IGOSRl and/ or 

S I GOSR2 asynchronous signals to the PLD. The s IGOSRl signal causes a level increase and 

s IGOSR2 resets the level to zero. 

The Server Structure 

The server program entry point is the initialization routine developed for this project. 

During server initialization, a BIND server resource record query packet is assembled to 

encapsulate a request for the HINFO record pertaining to the server host. The server sends the 

query packet to the nameserver and awaits a response. The HINFO resource record contains 

one field for the CPU identification and one field for the operating system identification ll 0, 

19]. Both fields are set by the system manager when the node is configured as a net work 

member. The processor performance metric has been encoded in the HINFO record by 

appending the metric to the CPU field. The buffer returned from the nameserver is parsed to 

extract the metric from the CPU field. The metric is inserted into a sub-field which has been 

allocated in the LLBD entry annotation field as shown in Figure 7. 

The server continues the LLBD entry initialization by setting the processor loading sub-

field to one and setting the current state sub-field to "UP". It generates a new UUID and loads 

the UUID into the object instance field. The LLBD type field is set to the cndeType. Then the 

server initializes all of the RPC function vectors and registers each interfacel with the LLBD. 

If for any reason the LLBD record cannot be properly initialized, the server ·will terminate to 

prevent the PLD from parsing malformed LLBD annotation fields. 

Each interface exported by a server must have a cleanup handler and an abort function 

declared. The abort function is necessary to support chore abort requests from a client. The 

abort function delivers a CPS signal to the server task which is actively processing a chore. 

1 Recall that in the NCS context, an interface refers to a collection of related functions; each RPC r unction 
exported by a server does not require its own entry. 
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The aoort function returns to the caller and the active server task enters the cleanup handler. 

The cleanup handler validates the chore abort signal, tenninates the task, and passes the abort 

status back to the client task which had initiated the chore RPC. The server then enters a 

quiescent state awaiting another RPC from a client. 

A more elegant implementation of the server abort function would be an abort capability 

built into the RPC run time library which would be callable from the client. In fact, such a 

function exists, but it exists in name only. An invocation of the 

rrpc remote shutdown () function returns a status code which is translated to mean 

"function not yet implemented". 

The Client Structure 

The majority of the software written for this project is a collection of client support 

functions. This is expected because the client does all of the coordination and book-keeping 

for parallel processing. The client program entry point is located in the application program per 

se; it is not the initNCS function. The functions discussed in this section are organized in the 

hierarchy that they are used to implement the initNCS, doPar, and synchServers functions. 

The two arguments passed to initNCS are the function code and the requested number of 

servers. The function code is used as the control variable to a switch construct. Within the 

switch, cases are declared for each valid function code. For each case, the object interface 

UUID is detennined and the abort function pointer is set. The function code was used instead 

of the interface UUID directly because the UUIDs cannot be compared for equality in the 

switch. The abort function is also interface specific; it must be set for each case. 

Potential servers are identified by sending an object interface query packet to the LLBD. 

Each server record received from the LLBD has the server state, load, and the performance 

metric encoded in the annotation field as described in the PLD and server sections. The client 

reads the state sub-field of each LLBD entry to verify that it is marked "UP". If it is not, the 
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entry is discarded. Then, the client sons the set of remaining entries using the BSD qsort 

utility. Entries are sorted based on their processor performance to processor loading ratio. The 

highest ratio servers appear first in the list returned from the qso rt operation. A RPC handle 

is created for each server up to the lesser of the number of servers requested and the number of 

servers available. 

The server accounting table is cleared and one client task is created for each server. Each 

task begins executing immediately and establishes its own cleanup handler. Each task enters a 

self-scheduling loop to retrieve an entry from the chore queue and process it. The loop is 

exited when there are no more chores to compute. Then, the task sets its completion status, 

releases the cleanup handler and exits. 

The doPar function accepts a variable argument list. Once again, a switch based on the 

function code is entered. Each case of the switch allocates the required amount of temporary 

storage for the function arguments. The function arguments are copied from the variable 

argument list to the temporary storage structure. Next, the chore queue is locked, the address 

of the temporary storage is inserted on the queue with the BSD ins que utility and the queue is 

unlocked. The doPar function returns to the caller without waiting for the chore to be 

computed. 

The client application calls synchServers to establish a rendezvous after all calls to doPar 

have been completed. The synchServers function sets a global flag which indicates that no 

more new chores are to be enqueued and waits for the client tasks to complete processing. As 

each task sets its completion code, the synchServers function releases the task. When all tasks 

have terminated, the synchServers call returns and the client program continues processing 

with a single thread of execution. 

The logic used to dispense chores is shown in Figure 8. The basic flow is described 

here. If there is a chore queue entry, remove it with the BSD remque utility. If there is no 
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lock choreQ 
if (!first_time_for_server) 

update ServerTable. worst_case_time 
free(memory used for previous set of call arguments) 

if (current_server_state == SERVER_RESTART) { 
!* must be the first one finished this chore *I 
abort redundant servers, set their state to SERVER_ABORT 

current_server_state = SERVER_IDLE 

if (choreQ has an entry) { 
remque; load pointer to arg structure into ServerTable 
update ServerTable.startTime, state, numberServiced 
unlock choreQ 
return (VALID) 

} else if (!synchronizingServers) { /* more chores expected *I 
unlock choreQ 
return(W AIT_ TRY _AGAIN) 

/* must redundantly start a currently active chore */ 
scan server table for chore with the latest estimated completion time 
if (no servers are active) { 

set the global_done flag 
unlock choreQ 
return (DONE) 

set ServerTable.state to SERVER_RESTART in current and worst 
case server. 

update ServerTable.startTime, numberServiced for current server 
unlock choreQ 
return (VALID) 

Figure 6. Chore Distribution Psuedo-Code 
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queue entry but more are expected, return a function code which instructs the requesting task to 

wait and try again later. Otherwise, the redundant chore logic is activated. Note that a mutual 

exclusion lock is required to prevent the asynchronous tasks from corrupting the global chore 

accounting data structure. Since BSD does not suppon semaphores, the lock is set and cleared 

with Domain/OS system service calls mutex_ $lock and mutex_ $unlock l4]. The chore 

accounting data structure is a table which indicates the address of the current argument set, the 

server state, the worst case processing time, and the current chore stan time for each known 

server. 

Test Programs 

Mandelbrot 

The client program for the mandelbrot application is composed of three major pans. The 

first pan creates a display window on the workstation and loads a color map. The second part 

performs the initNCS, loads the chore queue via calls to doPar, and invokes tasks. The third 

pan is the task function itself which controls a server, gets chores, and draws each scanline on 

the monitor. Each server program is structured as a single block of code which registers its 

interfaces and waits for a RPC to compute the scanline pixel values. To analyze the behavior 

of the system when the server computation time is very large relative to the RPC data transfer 

time, large RPC processing time can be simulated by anificially increasing the number of times 

that the scanline is computed for each RPC. 

Lin pack 

The LINPACK function selected for evaluation in this architecture is the ZGECO 

subroutine which factors a double precision complex matrix and estimates the condition of the 

matrix. The psuedo-code for the ZGECO subroutine and its subroutine calling hierarchy are 

shown in Figure 9. This section discusses the analysis process for the existing software and 
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ZGECO Structure 

Begin: 

End: 

Call ZGEFA 

Loop: 
Call ZDSCAL 

EndLoop: 
Loop: 

Call ZDOTC 
Call ZDS 

EndLoop: 
Loop: 

Call ZAXPY 
Call XDSCAL 

EndLoop: 
Call ZDSCAL 

Loop: 
Call ZDSCAL 
Call ZAXPY 

EndLoop: 

ZGEF A Structure 

Begin: 

End: 

Loop: 
IZAMAX 

Call ZSCAL 

Loop: 
Call ZAXPY 

EndLoop: 
EndLoop: 

Figure 9. LINPACK Psuedo-Code 
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! factor matrix 

!scale vector by double precision scalar 

! Complex dot product 
! scale vector by double precision scalar 

! constant *vector + vector 
! scale vector by double precision scalar 

! scale vector by double precision scalar 

! scale vector by double precision scalar 
!constant *vector+ vector 

!Get index of element with max value 
! scale vector by complex constant 

! constant *vector + vector 
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identifies likely candidate functions for parallel execution in multiple servers. A prof 

analysis indicates that the ZGECO execution time is dominated by the time spent in the ZGEFA 

function which factors the matrix. ZGEF A in turn makes repeated calls to the ZAXPY 

subroutine to scale a vector and add it to another vector. For each ZGECO invocation, there is 

only one call to the ZGEFA function. Clearly, this cannot be parallelized. Within ZGEFA 

however, ZAXPY is called within a loop. Each ZAXPY call can be safely execmed in parallel. 

The execution time for ZAXPY is expected to be a linear function of the number of vector 

elements since the computation for each element in the resultant vector requires exactly four 

multiply and four addition operations. To determine if the ZAXPY routine should be 

implemented as a RPC function, some single processor execution time measurements were 

collected for various size vectors on several node types. On the DN4500, the ZAXPY 

execution time for a 100 element vector is 2.5 msec. On the DN10040, the same computation 

requires 250 jlsec. The other consideration in evaluating potential RPC candidates is the 

of the interface or the number of bytes which must be transferred in each direction during the 

RPC. Let E be the number of vector elements. Then the size of the data which must be 

shipped to the server is given by S = (2*E + 1) * sizeof(d_complex) + 3 * sizeof(int). The 

amount of data which is returned to the client from the server is given by C = E 

*sizeof(d_complex). The total data transferred is T = S + C :::: 3 * E * sizeof(d_complex). 

On the Apollo, the size of a double precision complex number is 16 bytes thus the total data 

transferred for a 100 element ZAXPY operation is approximately 4800 bytes. A ZAXPY 

prototype has been implemented as a single threaded client and server. The client has a double 

do loop organization. The outer loop controls the number of vector elements and the inner loop 

controls the number of ZAXPY operations for each vector size. 

Intuitively, the ZAXPY RPCs have relatively large data transfer requirements and 

relatively short processing time. No performance improvement is expected if ZAXPY were to 
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be implemented in NCS. Test results which validate this analysis are reported in Chapter 6. 

The overhead costs are simply too high; it will be seen that the performance actually degrades 

substantially. 

Extensibility 

At the coarsest level, this architecture can be extended through the incorporation of 

additional server nodes. The additional server nodes need not be binary compatible with the 

existing CNDE nodes; the minimum requirements for a new node are that it supports TCP/IP 

and NCS. If the node is to run the client, the CPS multi-tasking capability is required as well. 

As the node is configured to be a member of the CNDE network, a properly formatted HINFO 

record must be created and inserted in the BIND server database. 

If additional functions are added to an interface which is already supported in this 

architecture, then the only files that must be updated are the NIDL source files and the 

application specific client and server routines. If a completely new interface is to be integrated 

into this architecture, then in addition to the modifications for the previous case, source files 

provided in this project must be updated to provide a new case in the initNCS, doPar, and the 

task function. The utility functions are contained in object libraries and do not require 

modification except for maintenance. 
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CHAPTER 5. RESULTS 

RPC overhead measurements in the CNDE environment 

To establish the baseline from which analyses can be made regarding the RPC data 

transfer time, performance measurements were made in the CNDE network. The overhead 

measurement methodology was adapted from Franscisco and LaBossiere [11]. To measure 

the overhead time, single threaded null RPCs were placed between client and server pairs 

running on several combinations of node types. The RPCs transferred variable length arrays to 

the server and from the server in both idempotent and non-idempotent (at most once semantics) 

modes. The test results for each size vector were averaged over three trials in each direction for 

both modes. The vector size ranged from zero to 10,000 bytes. The performance of the DDS 

protocol versus the IP protocol was also measured in this manner. The nominal RPC 

performance of several client I server configurations is plotted in Figure 10. Figure 11 

compares DDS and IP performance for two cases. 

The performance plots indicate that the overhead time is a nearly linear function of the 

argument list size or the number of bytes transferred. The best case results occur when the 

client and server are co-located on the DN10040. The cost is essentially a memory to memory 

move. The DDS protocol performs slightly better than the IP. The difference is narrowed on 

the DN10040 since the TCP daemon is not competing with the client or server for the 

processor. One effect noticed during testing was that the NCS protocol performs best when 

the client and server processor speeds are closely matched. If they are not, timeouts and the 

associated recovery mechanisms degrade throughput. 

Note that since this is an Ethernet environment, the transfer rates collected are to be 

regarded as "nominal" rates. The actual rates could be much worse depending on the network 

load. The testing was performed in a quiescent though not pristine environment. No other 

users were logged in during the testing. No action was taken to specifically limit the other 
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50000 

* DN10040 DN2500 DDS 

40000 

---fr- DN10040 DN4500 IP 
30000 

20000 

10000 

-a- DN10040 DN10040 DDS 

o~~--r-~~--~-r~~T-~~~~-; 

0 1000 2000 3000 4000 5000 6000 

Argument List Size (Bytes) 

Figure 10. Nominal Remote Procedure Call Overhead 
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Figure 11. RPC Overhead Comparison for DDS and IP 
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background traffic which may have been present on the network. No NCS communication 

failures were reported and the hardware network adapter device error counts remained constant 

through the tests. The RPCs were performed with application level verification enabled such 

that both the client and server explicitly computed checksums on the transmitted and received 

data buffers. 

Unpack Performance 

The best case RPC overhead for a null argument list is approximately 5 msec. This 

implies that the client could make a maximum of 200 calls per second. A more realistic figure 

for the overhead when a total of 5000 bytes are transferred is 35 msec; or 29 calls per second. 

Recall from Chapter 5 that the worst case ZAXPY computation time on a DN4500 was 2.5 

msec for 100 vector elements; on the DN10040, the computation time was 250 11sec. One 

hundred ZAXPY operations on the DN4500 require 250 msec. Single processor ZAXPY 

execution times for various length vectors are shown in Figure 12. 

Testing the ZAXPY operation for a single threaded RPC has yielded some rather 

surprising results. The performance for several cases are plotted in Figure 13. Once again, the 

best case is the client and server co-located on the DN10040. For 100 element vectors, the 

execution time is 12.8 msec. DPAT analysis shows that neither the client nor the server CPU 

were fully utilized suggesting delay due to memory contention. The execution time for the 

client and server running on separate DN4500s yields better results than the client on a 

DN4500 and the server on the DN10040. This means that the NCS error recovery 

mechanisms for flow control errors between the client and the server cost more than the actual 

vector computation. 

These figures are now compared to the expected time for 100 ZAXPY operations 

performed in parallel on the DN4500 and the DN10040. Note that during either the null RPC 

call or the single processor ZAXPY performance measurements, the entire CPU was dedicated 
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Figure 13. ZAXPY Remote Procedure Call Performance 
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to that one job. In this case, two tasks would be competing for the same processor on the 

DN4500. If the task time slice algorithm is fair, then the times listed above for data transfer 

and computation on the DN4500 can be expected to double. Thus, the RPC overhead from the 

DN4500 to the DN10040 becomes 70 msec and the execution time on the DN45(X) jumps to 5 

msec. The execution time on the DN10040 remains at 250 IJ.sec. In the first 70 msec of the 

parallel processing interval, 14 elements have been computed on the DN4500 and the data 

transfer overhead time for one element has elapsed. At 70.25 msec, 15 elements have been 

computed. At 140.5 msec, there have been 30 elements computed, at 210.75 there are 45 

elements and so on up to all 100 elements at 471.5 msec. Note that this is nearly double the 

250 msec required on the DN4500 alone. Doubling the execution time by increasing the 

number of processors is clearly unacceptable. This problem does not map well to this 

architecture because the transfer time is much greater than the computation time on either 

processor. 

Mandelbrot Performance 

Most of the testing for this project was done with the mandelbrot application. The basic 

functions of the server selection and fault handler mechanisms were demonstrated by 

exercising the client and server programs and artificially inducing faults or marking a server 

off-line with the /etc/ncs/ lb_admin utility. At the end of chore processing, the client 

displayed statistics about the number of chores processed by each server, their worst case time, 

etc. 

Mandelbrot image generation times for a fixed set of 400 scanlines computed with 

several client/ server configurations were measured and are shown in Figure 14. There are 

several features of Figure 14 worth noting. First, the execution time on a single DN4500 

workstation is an average of 454 seconds. Moving the client to the DN10040 causes a 

decrease of 29 seconds or 6%. Augmenting this configuration with additional DN4500 servers 
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www.manaraa.com

56 

scales almost linearly: three servers produce an image in 148 seconds; four servers complete in 

108 seconds. Further improvements are noted if three DN2500 workstations are added to the 

test configuration. In this case, the total time is an average of 82 seconds for a total speedup of 

82%. Note that the aggregate performance metric for the seven processors is 44. The metric 

for a single DN10040 processor is 22. But the execution time for the ON 10040 server is 27 

seconds. This number is slightly distorted by the fact that both the client and server are located 

on the DN10040 and the intra-processor data transfer time is much less than the data transfer 

time over the network as shown in the RPC overhead results section. 

To test the network dependency, the client was moved to a DN4500 and tested against a 

single DN10040 server and also tested against a set of four DN4500 servers. In the first case, 

the execution time is 47 seconds; in the second, it is 118 seconds. Once again the ON I CX)40 

performs well above a set of lower performance servers. Looked at another way, four 

DN4500 servers driving a client on the DN10040 produce an image in 108 seconds and the 

same four servers driving a client on a DN4500 produces an image in 118 seconds. The best 

time obtained for a client on the DN4500 was provided by four servers running on the 

DN10040. However, the difference between four DN10040 servers and two DN10040 

servers was only two seconds. This is expected from a DPAK analysis since one ON 10040 

server causes the DN4500 client to consume more than 50% of the host CPU and two 

DN10040 servers cause the client to consume more than 90%. Above two DN10040 servers, 

the DN4500 client was clearly saturated and could not keep up with the chores returned by the 

fast servers. If the client were on the DN10040, the saturation problem still exists but it is not 

as severe since the client processor capacity is much greater. 

A version of the application was created to replicate the calculations within each server to 

simulate compute intensive RPC calls. The data collected from these runs was used to 

determine if the RPC overhead can be amortized over the computation periods to show even 
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more significant speedup from the parallel processing. The relative performance of the same 

test configurations showed no significant differences. One notable difference is the effect of 

the slow server abort function in configurations which mixed a DN10040 processor with some 

DN2500 and DN4500 processors. In almost every case where redundant chores were started, 

the DN10040 processor finished first and the slow speed server was aborted. In a few cases, 

the slow server·got enough of a "head start" to finish before the DN10040 server. 

The PLD performance is included in this section because most of its evaluation and 

analysis pertains to the Mandelbrot application testing. The log files indicate that the program 

only occasionally encounters an error while trying to determine the load information from the 

shell. The fault handler gets activated and the program recovers. In most cases, the load 

threshold drops to zero causing an automatic LLBD update. While not specifically tested, the 

CPU time charged to the processor loading daemon is on the order of 60 seconds of CPU time 

per day. This figure was obtained by sampling the processor status while a PLD instance was 

running. The processing time will vary with the number of cndeType entries in the location 

broker database and the fluctuation in each processor loading. 

To determine if the time for maintaining the chore queue is significant, tests were run 

with and without these functions enabled. The cost for the chore queue management is 

approximately two seconds on the DN4500 and one second on the DN10040 which was 

deemed as slightly high but still acceptable. The server selection mechanism was further 

demonstrated by utilizing a set of lightly loaded workstations to out perform a high 

performance workstation which was moderately to heavily loaded. Four external jobs were 

started on the DN10040. Then one mandelbrot server was started on the DN10040 and the 

client was run on the DN4500. The total time for this processor and job configuration was 168 

seconds. In this case, the loaded DN10040 performed slower than a set of four idle DN4500 

servers which finished in 118 seconds. 



www.manaraa.com

58 

For this application, the number of chores serviced correlates well with the penom1ance 

metric divided by the processor loading for server configurations which include DN45(X) and 

DN2500 workstations. The DN10040 processor completed more chores than would have been 

expected using this method. Even so, the method is useful because the ratio for the DN10040 

is the highest and servers located on this processor do perform the best. 

Problems Encountered 

There were several problems noted in the Apollo development environment. The 

problem with the most impact was that not all NCS functions are implemented in the RPC run 

time library as pointed out in Chapter four. This caused the redundant server abort logic to 

greatly increase in complexity. It also has a ripple effect which makes the integration of new 

functional interfaces more difficult because an explicit chore abort function must be defined. 

The NCS run-time library is not entirely bug-free. During the overhead performance 

measurement testing, a few cases were encountered in which the client and server deadlocked: 

both sides were active but neither made any progress on the call. The RPC should have 

aborted due to either the packet retry count or ping count values exceeding their maximum 

values. Also, NCS flow control mechanisms are not effectively implemented. When a fast 

server and a slow client communicate or vice-versa, there is a significant amount of pinging 

and packet retries. This does not occur to the same extent when the client and server 

processing speeds are evenly matched. 

The NIDL syntax is deficient in its ability to handle either more than one variable length 

array or two dimensional arrays in a RPC interface definition. This problem was first noted by 

Francisco [11]. The impact for this project was that the interface defined for the UNPACK 

RPC tests forced the two variable length ZAXPY source vectors to be concatenated into one 

larger array by the client and unpacked at the server. 
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Another annoying aspect of the development environment was that the UNIX lint 

utility cannot be effectively used on NCS applications. Lint fails with a segmentation fault 

while processing one of the required NCS include files. If the suspicious header files are 

excluded from the lint analysis, too many error messages are displayed for the utility to be 

useful. 

Some bugs were also noted in the implementation of the CPS and the PFM packages. 

There were intermittent failures in the delivery of CPS inter-task signals which caused 

problems in the server abort logic. Most signaling failures simply displayed a generic run-time 

error message and left no traceback or core dump to assist in isolating the true cause of the 

problem. Also, the CPS function used by a task to give up control of the processor does not 

behave as described in the release notes. This has the effect of causing all chores to be queued 

before any chores are be assigned to servers. The PFM cleanup handlers occasionally fail to 

execute for no externally apparent reason. This problem was detected when the servers were 

stopped and their entries were not removed from the LLBD database even though a handler had 

been successfully established to remove them. This led to increased complexity in the PLD to 

periodically verify that the LLBD entries do indeed represent functional servers. 

Another problem encountered but not directly addressed is the issue of portability. The 

multi-threaded client RPC code developed on the Apollo is not directly portable to other 

workstations which do not support CPS. Lack of an equivalent mechanism elsewhere would 

result in single threaded applications which would at best attain close to the performance of the 

highest compute power server in the network. In retrospect, the tasking mechanism was a 

poor choice because of the portability considerations. The root of the problem however is that 

the blocking RPC semantics are not inherently well suited for parallel processing. 
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CHAPTER 6. CONCLUSIONS 

Summary 

This thesis describes a new application layer architecture for use in a dynamic network 

computing environment. A client/ multiple server model is used to implement medium grain 

parallel processing. Multi-threaded clients and servers communicate via the NCS RPC 

facilities. The major design issues addressed are run time server selection, fault handling, 

extensibility, and performance. A few cases of applications were analyzed and their suitability 

for use in this new architecture is discussed. 

The underlying Network Computing Architecture is described and compared to other 

current research and commercial network computing environments. The enhancements 

developed for use in this project were inspired by the solutions presented in these other 

distributed computing architectures. In particular, the concept of evaluating servers based on 

their expected throughput was imported from the Enterprise project. Also, the chore queue can 

be thought of as a sort of tuple space which is accessible to all client tasks. In comparison to 

Athena, this architecture has better support for parallel processing through the use of CPS. 

Server "bids" are accepted with much less traffic than that required in Enterprise since no 

broadcast messages are involved and the client can make its server selection decisions based on 

one LLBD query. This architecture is also much more flexible than the Emerald system since 

all participating programs running on a node are not mapped into the same virtual address space 

though one client and all of its constituent tasks are at present mapped to the same virtual 

address space. More than one client may be active with its own address space. The biggest 

advantage the architecture offers over PAX is better crash detection and error recovery. In this 

case, the NCS protocol will detect a communication failure due to lack of ping responses; in 

PAX, a client may simply deadlock while waiting for a tuple to arrive from a server which has 

long since crashed. ISIS offers the virtual synchronicity feature which ought to make the 
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design and implementation of a distributed processing system simpler. One big disadvantage 

of this architecture is the fact that the interfaces to access NCS and parallel processing are not 

as clean as they might be. A developer must do more than make a few library calls to invoke 

the power available in the network. One shortcoming present in all of these systems is the lack 

of decent development tools which would guide a developer in making decisions on program 

partitioning, interface sizing, server placement, etc. 

This project met its goal of creating an extensible application architecture which adapts to 

run time conditions. This architecture has been shown to be a good environment for some 

classes of separable problems though as we have seen, certainly not all. 

It is true that a single threaded RPC is relatively easy to implement and understand. Its 

major deficiency is that it has high overhead costs. For many single threaded applications, the 

entire program should be moved to the server and perform all local procedure calls to avoid the 

RPC cost. Difficulty arises when considering multithreaded RPC because there must be some 

mechanism to circumvent the RPC blocking semantics. Additionally, the job must be 

partitioned over a server pool which may have vastly different computation speeds. In this 

architecture, the Domain/OS CPS package was used to define multiple client threads. Each 

thread initiated a RPC to its own server. The disparate server computation capacities was 

addressed by implementing a: self scheduling algorithm so that the servers can be assigned new 

work as they become ready. 

Not all compute intensive problems can be solved with a network computing model. 

Message passing models like RPC appear to be entirely the wrong approach for UNPACK 

because of the data dependencies and the data communication requirements. A shared memory 

multiprocessor model is much more suitable for the current LINP ACK algorithms and other 

functions which have short processing time and long argument lists. 
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This project did not set out to design new algorithms and sometimes this is exactly the 

approach that should be taken. The idea of plugging existing programs into a parallel 

architecture is often impractical; the original design may not accommodate any method other 

than sequential processing. There is no substitute for better algorithms; any architecture cannot 

exploit parallelism which simply does not exist. 

Future Work 

Additional research is needed to develop a software tool set which facilitates distributed 

system development. Jordan points out the need for automated analyzers which can perfom1 

global algorithm analysis instead of limiting the scope to a subroutine [ 13]. His concept must 

be expanded from a multi-processor parallel processing environment to be applicable in a 

network computing architecture. 

Within the realm of the architecture developed for this project, there is ample opportunity 

for continued development. Work remains to be done in the area of pre-loading parameter 

values which would be retained in the server over a set of chores thereby reducing the data 

communication requirements. A pre-compiler to automate the initNCS and doPar code 

modifications which are required to integrate new functions into the architecture should be 

developed. Also, the vendor MIPS ratings may not accurately reflect the anticipated application 

computation profile. Thus the performance metric should be based on the execution time 

required for representative "real" CNDE application programs. Suitable CNDE numerical 

modeling programs should be fully integrate into this architecture and tested. 

Outside the Apollo domain, this application architecture can be extended to include clients 

and servers on heterogeneous platforms. Preliminary investigation performed with DEC 

workstations in the CNDE environment demonstrated that production release NIDL and the 

NCS run-time library from the two vendors are not entirely compatible. Interoperability should 

continue to be investigated as future production releases become available. One area in 
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particular which needs attention is a CPS like mechanism to suppon multiple servers from a 

client running in a standard UNIX environment. 

Beyond the application architecture developed here, some representative CNDE 

applications should be implemented in some of the other network programming paradigms 

such as ISIS to compare ease of integration, flexibility, and performance. 
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