
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1990

Dynamic server selection in a multithreaded
network computing environment
Joseph F. Stapleton
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Stapleton, Joseph F., "Dynamic server selection in a multithreaded network computing environment" (1990). Retrospective Theses and
Dissertations. 254.
https://lib.dr.iastate.edu/rtd/254

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F254&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F254&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F254&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F254&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F254&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F254&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Frtd%2F254&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/254?utm_source=lib.dr.iastate.edu%2Frtd%2F254&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Dynamic server selection in a multithreaded network computing environment

Approved:

by

Joseph Francis StapletOn

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Depamnent: Electrical Engineering and Computer Engineering
Major: Computer Engineering

Iowa State University
Ames, Iowa

1990

Signature redacted for privacy

www.manaraa.com

ll

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION

Problem Description

Proposed Solution

Definitions

Evaluation Plan

Document· Structure

CHAPTER2. BACKGROUND

Current CNDE Network Computing Environment

Comparison to Selected Other Distributed Computing Environments

CHAPTER 3. DESIGN CONSIDERATIONS

Assumptions

High Level Design

The Server Selection Algorithm

The Chore Queue

Fault Handling

Cross Language Considerations

Variable Argument Lists

CHAPTER 4. IMPLEMENTATION

Status and Error Logging Utility Functions

The Processor Loading Daemon

The Server Structure

The Client Structure

Test Programs

Extensibility

CHAPTER 5. RESULTS

RPC overhead measurements in the CNDE environment

Lin pack Pert'ormance

Mandelbrot Pert'ormance

Problems Encountered

CHAPTER 6. CONCLUSIONS

Summary

5

5

7

7

17

;­_)

29

31

33

34

35

36

36

36

40

41

44

47

48

48

51

54

58

60

60

www.manaraa.com

Future Work

BIBLIOGRAPHY

ACKNOWLEDGEMENTS

lll

62

64

66

www.manaraa.com

IV

LIST OF FIGURES

Figure 1. CNDE Network Topology

Figure 2. NCS Protocol Layers

Figure 3. Client and Server Program Generation Process

Figure 4. General Distributed Processing Configuration

Figure 5. Program Structure

Figure 6. Server Selection Scenario

Figure 7. LLB Entry Record Annotation Field Encoding

Figure 8. Chore Distribution Psuedo-Code

Figure 9. LINPACK Psuedo-Code

Figure 10. Nominal Remote Procedure Call Overhead

Figure 11. RPC Overhead Comparison for DDS and IP

Figure 12. ZAXPY Single Processor Performance

Figure 13. ZAXPY Remote Procedure Call Performance

Figure 14. Mandelbrot Execution Times

9

10

15

26

28

32

38

43

45

49

50
-;)_

53

55

www.manaraa.com

v

LIST OF TABLES

Table 1. CNDE Apollo Node Configuration Summary 7

www.manaraa.com

CHAPTER 1. INTRODUCTION

Problem Description

Research has been conducted at the Iowa State University Center for Nondestructive

Evaluation (CNDE) to create a structure in which existing numerical modeling programs can be

converted to execute in a network computing environment. This research task is to include the

development of an extensible architecture which accommodates the timely integration of new

processing capabilities and requirements. The research was motivated by many needs within

the CNDE to reduce the predicted run times associated with the current and future model in)!

programs.

The project is to demonstrate the feasibility of adapting existing Fonran programs to the

Network Computing Architecture (NCA). The primary goal is to create an application layer

architecture with a limited set of external interfaces which exploits the opportunities for parallel

processing within the existing CNDE computing environment. Parallel processing in the nati vc

CNDE environment is complicated by the fact that neither Fortran, i.e., f77 nor the NCA itself

has any constructs for expressing program parallelism. Further, the NCA facilities for

identifying potential computation servers provide insufficient information to evaluate candidates

on the basis of expected throughput. A ,dedicated low performance computation server may

have better throughput than a fully loaded high performance server. Additional logic is needed

to estimate performance based on processing power and the current computation load on the

prospective server. A secondary goal of this new architecture is to create a higher level of

functional abstraction which shields the CNDE software developers from some of the details of

the underlying networking issues such as node addressing.

This thesis briefly discusses the analysis process for the existing programs. The

objective of the analysis is to identify which program regions to implement in parallel in order

to leverage the most performance gain. The major thrust of this thesis is directed toward the

www.manaraa.com

2

design objectives and implementation of an application layer architecture which supports

parallel processing in the CNDE computing environment. Toward this end, system issues

such as fault tolerance, software partitioning, and scheduling considerations are addressed in

subsequent sections.

Proposed Solution

The proposed solution for creating the application layer architecture is to augment

standard commercial packages with local enhancements to provide the necessary degree of

robustness, adaptability, and extensibility. The standard commercial packages include the

Network Computing System (NCS) and utilities for evaluating current serial program

behavior. Robustness is achieved through the implementation of a uniform program fault

handling strategy and exploiting host operating system features to control multiple computation

servers from one master process. Adaptability is provided so that the system can respond to

changing conditions on the network hosts such that high throughput servers are favored over

heavily loaded servers and unresponsive servers are automatically eliminated from

consideration for future tasks. Extensibility is a gray area which means that relatively few

software mooifications are required to integrate new functions into this architecture.

The system model for the proposed solution is a master/ multiple slave paradigm to

implement a divide and conquer strategy. This strategy implies that the problem can be totally

partitioned into sets of independent calculations which may be performed in parallel.

Borrowing a term from Jordan, each set of calculations will be called a chore f 13]. For

example, consider a Fortran DO loop in which each iteration of the loop body does not

destructively interfere with any other iteration. The overall problem becomes a many to many

mapping of the chores to the number of servers. When the number of chores is less than the

number of active servers, the system attempts to get the earliest possible completion time at the

expense of processor resource utilization. This means that if a server becomes idle before the

www.manaraa.com

3

entire job has completed but after all of the chores have been assigned to servers, the idle server

is redundantly assigned the same chore as an already active server. When any server completes

this chore, all other redundant servers working on the same chore have their operation

cancelled. When the chore is aborted, partial results are discarded thus wasting the aborted

server's processor resources.

An overview of the run-time processing scenario is now described. A computation

server program is started on several network nodes. Each instance of the server operates

independently and typically runs as a background daemon. A multiprocessor node may have

more than one instance of a particular server program. The client may either use all available

servers to perform a given function or limit the set of active servers to be the most capable

ones. Each active server independently and concurrently computes operations as requested by

the client. When all chores have been computed, the client resumes normal serial processing

until another opportunity for parallelism arises.

The enhancements developed for this project exist at three levels: UNIX pnx:esses,

object libraries, and source code. The process is a daemon which runs on all participating

nodes to monitor the load on its host and report when the load changes significantly. The

object library contains utility functions such as server utilization accounting functions and

server comparison functions for use in sorting routines. The NIDL and C language source

code will be expanded as new functions are added. Expansions may be required to

accommodate new interface definitions and provide proper processing of the new function

argument lists.

The process of adapting existing software to run in the network computing environment

begins with an analysis of the current application behavior. The objective of the analysis is to

identify regions of the program which may be safely implemented in parallel. The software

conversion process entails defining the client and server processing requirements, defining the

www.manaraa.com

4

interface between the client and server(s), and implementing any special handling routines that

are required as a result of parallel computation.

Definitions

Some definitions are required in order to establish the proper context for the remainder of

this document. The term network computing means a computational system in which rhe

hardware and software components are distributed on a local area network. It is an extension

to conventional distributed processing in that this network computing model supports multiple

active servers operating in a coordinated fashion. It is also a form of loosely coupled parallel

processing since each processing element has its own processor and memory resources and in

this case, each has its own copy of the operating system. This contrasts to a special purpose

multiprocessor hardware architecture which is composed of tightly coupled high perfom1ance

processors such as a Connection Machine. A Network Supercomputer refers to a collection of

high performance workstations which are interconnected via a local area network. It is

characterized by a large aggregate computation capacity, large distributed memory, and a very

large, perhaps variable communication latency. By this definition, the CNDE computing

environment is a network supercomputer.

The term grain size arises in the discussion of parallel processing systems. The grain size

reflects the minimum size of the program executed on each of the processors which is sufficient

to overcome the increased overhead of coordinating the parallel processes. In general,

multiprocessors are categorized as fine grain systems meaning that the overhead is relatively

low. A network computing systems is categorized as a medium to coarse grain architecture.

A client or master is a program which controls or consumes computational resources. It

is used in tandem with a server or slave program which provides the resources. Typically in

this discussion, the server is strictly a software entity though in some places it may refer to the

www.manaraa.com

5

host on which the program resides. The meaning is clear from the context. For this project, all

clients and servers communicate via the NCS Remote Procedure Call (RPC) mechanism.

All software for this project was developed on Apollo Computer Inc. workstations. The

operating system for these workstations is a proprietary product called Domain!OS.

Domain/OS has a built in capability which allows the creation of multiple independent lfzreads

of execution within one process. Each thread is called a task; the original thread is called the

distinguished task (DT). Tasks can be created with much less overhead than a process

creation. Also, since all of the tasks exist within one virtual address space, inter-task

communication is more efficient than inter-process communication. A task is the Domain/OS

implementation of a light weight process.

Evaluation Plan

The software developed for this project is a subset of a much larger CNDE development

effort. Virtually all of the software developed for this project is written in C. The stmcture and

algorithms presented herein are to be tested for two sample applications. The first is a C

language program in which each scanline of a mandelbrot image is computed independently.

The second application is a Fortran program which solves a set of linear equations in complex

variables. The actual integration of this project software into the larger CNDE project is for

future development.

Document Structure

This thesis is organized into chapters. Chapter 2 provides some general background on

the current CNDE computing environment and discusses the underlying network computing

architecture in detail. It compares this environment to other distributed computing models

currently being developed elsewhere. Chapter 3 discusses some of the analysis techniques and

design decisions for implementing a distributed program. Architecture implementation details

www.manaraa.com

6

are discussed .in Chapter 4. Chapter 5 reports the results obtained from RPC overhead

measurements and timing the sample programs. Chapter 6 contains a summary and

discussion. By convention, all UNIX commands, file names, and library function names

referenced in the text will appear in the Courier font.

www.manaraa.com

7

CHAPTER 2. BACKGROUND

There are many varieties of Network Computing Systems in the commercial and research

communities. It is an attractive technology for two main reasons: 1) high performance servers

can be easily accessed from low performance workstations, and 2) spreading the computation

load among under-utilized nodes has great potential for increasing system throughput. The

NCA objectives and implementation are described in the next section. Following that, other

systems are described and compared to the NCA.

Current CNDE Network Computing Environment

The current CNDE network computing environment is composed of various models of

workstations manufactured by HP/ Apollo Computer Corp. At the low end of the computation

power spectrum, there are three model DN2500 CISC microprocessor based workstations and

at the high end, there is one model DN10040 which contains four proprietary RlSC

processors. In total, there are 13 HP/ Apollo nodes; their configuration is shown in Table l.

Table 1. CNDE Apollo Node Configuration Summary

Model Quantity CPU RAM (MB) Monitor Disk (MB) MIPS
DN2500 3 M68030 16 M 1280xl024 210 4
DN3500 1 M68030 8 C 1024x800 (2) 380 5
DN4500 1 M68030 16 C 1280xl024 380 8
DN4500 7 M68030 16 C 1280x 1024 760 8
DN10040 1 (4) PRISM 64 C 1024x800 (2) 697 22 each
Totals: 13 N/A 246 N/A 8484 155

All of the workstations are inter-connected via an intra-building thin wire Ethernet local

area network. The Ethernet cable plant is physically configured as a star topology with a set of

active repeaters at the center of the star. Valid packets which appear on one segment of the star

are rebroadcast on all other segments. Thus, a logical bus topology is created. One of the

spokes from the star leads to a bridge which filters traffic to and from the ISU main campus.

www.manaraa.com

8

A consequence of this configuration is that the CNDE Ethernet is free of interference as noted

by the absence of packet checksum errors. Also, statistics from the bridge indicate that the

network on the CNDE side of the bridge has a very low nominal loading. Figure I is a

diagram of the network topology.

The current version of the workstation operating system is Domain/OS Release l 0. 2.

Both BSD and SysV variants of UNIX are layered on top of Domain/OS. The Domain/OS

Concurrent Programming Support (CPS) package facilities for maintaining multiple threads of

execution within one process are thread creation, tennination, and synchronization.

Each Apollo workstation communicates via both DDS and TCP/IP communication

protocols over Ethernet. The DDS is an Apollo proprietary protocol which provides services

for all Domain/OS internode communication. The typical TCP/lP services are name service,

routing, telnet, ftp, and electronic mail. NCS Applications may employ either or both

protocols.

The Network Computin~: Architecture

The Network Computing Architecture (NCA) is an architecture for distributing software

applications across heterogeneous computers and networks [3, 15]. The detailed architecture

specifications are found in [2, 24]. The HP/Apollo implementation of NCA is called the

Network Computing System (NCS). NCS defines a request- response protocol and the

packet formats to create a layer of reliable communication on top of a network layer which

provides unreliable datagram services. A connectionless network protocol was selected to

minimize RPC overhead and make NCS applications viable on hosts which do not support

connection oriented protocols. The Berkeley socket abstraction is used to access the network

layer. Figure 2 shows the NCS protocol layers with a cross reference to the lSO/OSI

communication model layers. The principal NCS components are the RPC, the Network

Interface Definition Language (NIDL) compiler, the location brokers, and the task broker.

www.manaraa.com

9

... - Other repeaters
for CNDE Mac ,, , 1
and PC nodes

I' " I' ' DN4500 Repeater Repeater - ...
DN4500 . -- -

\.. ./ ' /

I~A aJ ··~ ·~· ~A
.J ~

DN3500 . - DN4500 - -

DN2500 - - DN4500 -

DN4500 - - DN4500

DN2500 - - DN4500 -

- ..
DN2500 - DN10040

- ...
DN4500 - Bridge

A ,
Campus Network

Figure 1. CNDE Network Topology

www.manaraa.com

10

Application Program

Application Layer

NIDL and NDR

Presentation Layer

NCA and RPC
Session Layer
Transport Layer

BSD Socket Interface

UDP/ IP IDP/DDS

Network Network

IEEE 802.3 Ethernet

Data Link Layer

Legend: /SOlOS/ terminology
UDP: datagram protocol for the Internet Protocol
IDP: datagram protocol for the Apollo DDS protocol
NCS components enclosed in heavy boxes

Figure 2. NCS Protocol Layers

www.manaraa.com

11

NCS is used extensively in the Domain/OS daemons which manage user authorization, printing

services, and file system backup. NCS is also the foundation for the software architecture

developed and described herein.

The NCS Computation Model The NCS computation model is object based.

Resources are characterized as objects. For example, a set of functions which manipulate

matrices could be an object. Objects in turn are categorized by type and manipulated through a

set of operations. An interface is composed of a set of related operations. Servers are

constructed to as collections of objects. A server is said to export all interfaces associated with

its object types. A client places a RPC to a server which is known to export the desired

interface.

The RPC is the basic element of the NCS computation modeL The RPC mechanism

allows a client program on one host to contact a server program resident on another host

through an interface which appears to be a local procedure call. ln reality, the client function

call transfers program control to the client stub routine. The stub routine accesses the RPC

run-time library to assemble the function arguments into network packets and transmit them to

the remote host. There, the server stub routine accepts the data, unloads the network packets,

and invokes the intended server function. Results are returned through an inverse process. On

the Apollo, this model can be extended through the use of CPS functions. CPS can be applied

to NCS such that a client may define multiple tasks; each task may concurrently initiate a RPC.

Concurrent RPC is the mechanism which supports parallel processing in this environment.

The CPS functions were used extensively in the developed software.

Though not exercised for this project, the NCS supports communication with

heterogeneous vendor platforms via the Network Data Representation (NDR). If any data

www.manaraa.com

12

representations are not consistent on a pair of communicating hosts, the receiver1 has enough

information to translate received packets into the correct local format. Packets are always

transmitted using "native" data formats. The receiver performs all data translations but only if

they are necessary. This contrasts with the SUN implementation of RPC data representation.

In that case, the sender and receiver always incur processing overhead as the data elements are

convened to and from a neutral transmission representation even if the sender and receiver have

the same native data representation [21]. NCS does not support explicit data typing on

transmitted packets; only the actual value of the data are transmitted. All NCS data typing

occurs when the interface is defined.

RPC Details The basic single-threaded RPC mechanism is mature technology. Recent

commercial implementations are based on the RPC framework presented by Birrell and Nelson

[6]. A goal of any RPC system is to make distributed computing easy for the implementor.

The ease of use stems from the appearance of making a normal local procedure call when in

fact the remote server is actually performing the intended operation.

A remote procedure call is intended to have the same behavior as a local procedure call.

This dictates that the RPCs are blocking; program control is not returned until the server

completes the request and returns the result. The RPC will reflect server run-time errors, for

example a floating point exception, back to the client. In addition, the run-time library

monitors the progress of a call so that it can detect and report host or network failures. The

NCS mechanism for this function is a periodic ping and acknowledge packet exchange between

the client and server. The ping frequency is adjusted with a binary exponential backoff scheme

to a maximum interval of 1024 seconds [2]. The client and server are modeled as finite state

lNote the distinction between client/server pairs and transmitter/receiver pairs. The client is the transmitter
and the server is the receiver during the function activation phase. The client and server roles are reversed during
the function return phase.

www.manaraa.com

13

machines in the run-time library. The state machines handle possible network computing

anomalies such as packet retransmissions and timeouts.

Arguments to RPC functions must eventually be passed by value since a remote host

cannot translate passed addresses in the proper context. The RPC interface definition may

include parameters which appear to be passed by reference. In this case, the stub routines will ·

perform automatic de-referencing. A NCS RPC occurs in a presumed trusted environment.

Nothing is encrypted and there are no passwords nor any other security checks associated with

the call itself. Servers and clients are assumed to be started by authorized users. In

comparison, the SUN RPC protocol includes selectable security such that the designer can

choose from no authentication, UNIX authentication, or DES authentication [211.

The NIDL Compiler The NCS NIDL compiler takes an interface definition as its input

and generates the C language stub routines for the client and server. The NIDL defines the

syntax of an interface definition. An interface definition is composed of the interface name, a

universal unique identifier (UUID) for the interface, and a list of functions which are exponed

through the interface. A UUID is a 16 byte binary string which encodes the hardware node id

on which the UUID was created and a timestamp. Each listed interface function itemizes the

data type and direction of each of its parameters. By convention, direction may be in to the

server, out from the server or both. Simple data types e.g., integers and characters as well as

aggregate data types, e.g., structures and arrays are supported.

The stubs emitted from the NIDL compiler contain the software which redirects the local

invocations to network transmissions. The stub routines also contain the software functions

which marshall and unmarshall the RPC parameters. Marshalling is the process of packing the

RPC parameters into network packets. The client stub is compiled and linked with the client

application software. The server stub is compiled and linked to the server application. The

NIDL compiler also generates a client switch stub file which allows for proper function name

www.manaraa.com

14

translation in the case of a replicated application where the client may access some of the

interfaces which it exports. Figure 3 depicts a typical compile and link process for clients and

servers which are produced from Fortran, C, and NIDL source files.

NCS Location Brokers The Location Broker daemons act as repositories for server

registration information and as forwarding agents for client connection requests. The daemons

have been implemented in two varieties: the Local Location Broker (LLB) and the Global

Location Broker (GLB). A LLB services all server registration requests and client lookup

requests for the local node. The GLB is used in conjunction with the LLB to resolve addresses

which are not local to the requesting host. Typically, each node runs the LLB and just a few

nodes run the GLB daemon. The GLB database is replicated among all network GLB

daemons in a highly available, weakly consistent fashion. The I etc/ ncs/ lb n utility

provided with the NCS release allows a user to display and/ or manually modify the contents of

either the LLBD or the GLBD data base.

A location broker entry is composed of the interface UUID, an object instance U U 10, an

object type UUID, a globaV local flag, a free form text annotation field, a socket address length

and a complete socket address which includes an address format identifier. The socket address

format also implies the data communication protocol. An IP address format means IP protocol

and a DDS format means DDS protocol. A server may have many location broker entries, one

for each interface that it exports.

If a server address is initially completely unknown to the client, as is usually the case in

NCS, the client formulates a lookup request which encapsulates the desired server

specification. The location brokers search their database for entries which match the request

www.manaraa.com

client_subroutines.f

client.c

interface_cstub.c

interface_cswtch.c

interface.idl

interface.h

interface_sstub.c

server.c

server_subroutines.f

Figure 3. Client and Server Program Generation Process

www.manaraa.com

16

specification. All entries which match the specification are returned to the requestor. The

entries returned to the requestor are in no particular order. Single threaded clients would

typically typically resort to using the first entry in the list. This is not a desirable characteristic

if the objective is to minimize execution time and the some other entry in the list actually contain

the location of a higher performance server. This deficiency is addressed in the project and

discussed in Chapters three and four.

If the client has partial information on the location of the intended server, i.e., it has only

the host address but not the port, the RPC may be placed to the LLBD well known pon on the

remote host. In this case, the LLBD acts as a forwarding agent and control is transferred to the

intended server. When the RPC returns, the client will have the fully specitied address for use

in subsequent calls to that same server.

Task Broker The Task Broker is an additional HP/Apollo layeredproduct which is

intended to provide some measure of network host load balancing. It is oriented toward batch

programs which require no user input and do strictly file input /output [12]. A system manager

must ensure that the programs are available on each prospective server and configure the Task

Broker with information such as program processing requirements, the expected network

activity, filenames, etc. When a user submits a program start request to the Task Broker, it

queries potential servers for bids and selects the highest bidder. If no bids are received, the

request is queued locally until a server becomes available. After a server successfully

completes, all output files are copied back to the submitting host. This technology was deemed

unacceptable in the CNDE environment because its batch orientation makes it quite inflexible

and it requires the system manager to have a-priori knowledge of the processing requirements.

Task broker has no provision for balancing computation loads which are data dependent.

www.manaraa.com

17

Comparison to Selected Other Distributed Computing Environments

Project Athena

Project Athena is a seven year old cooperative effort between MIT, Digital Equipment

Corp., and ffiM to develop a large scale heterogeneous computer system composed of

networked workstations [8]. The individual workstations are merely the distributed hardware

components of a larger system in which all resource allocation, security considerations, and

access to services is handled not at the node but at the system and or network level. The

Athena environment is essentially a layer of distributed services built on top of Berkeley Unix

and the Network File System (NFS) from Sun Microsystems. Athena has dedicated server

programs to handle user authorization and authentication, name service, system management

service, file service, window management, etc. Some of the Athena service daemons are

replicated to ensure high availability.

Each user has access to the power of the workstation at which they are seated. The

Athena system model does not include the concept of dedicated computation servers though the

architecture accommodates heterogeneous workstations with disparate computation power.

There is no direct support within Athena for parallel processing nor any automatic service to

migrate compute intensive jobs to the most suitable computation engine. A user must be aware

of the components of the network and submit jobs on capable computation servers which have

been configured to accept requests from this user.

Enterprise

The Enterprise system for distributed task scheduling was developed at the Xerox Palo

Alto Research Center [17]. It is intended to run on top of a remote process communication

mechanism like RPC. The system scheduling is based on the concept of an agoric computing

environment where servers "bid" for available work much like an auction in an open market.

www.manaraa.com

18

Each server independently computes its bid. Bidding is based on server processor capacity,

speed, network load, job characteristics, current location of data and related tasks. Enterprise

implements a Distributed Scheduling Protocol (DSP) which specifies the sequence and contents

of bidding messages. The typical message sequence is Announcemem, Bid, Award. A client

broadcasts the Announcement which includes a description of the job and its priority. Idle

servers respond immediately with a bid; busy servers enqueue the request and submit a bid

when they become idle. An idle server selects queued requests based on the job priority in a

FIFO fashion. A bid is essentially the server's estimate of the job completion time.

Multiple server bids may arrive at the client. The client always awards the job to the first

server from which it receives a bid. If another server submits a later bid which is significantly

better than the bid received from the first server, the job will be resubmitted to this better server

and aborted on the original server.

Clients periodically request status from their active servers. If no response is obtained,

the job is restarted elsewhere. Also, if the server does not get pinged periodically, it will

autonomously abort the job with the assumption that the client has crashed. Enterprise has an

estimation error tolerance parameter which is used to encourage reasonable estimated job

completion times. A job which exceeds the estimated time by more than the error tolerance is

aborted and restarted elsewhere.

Enterprise has been implemented at Xerox in LISP. Testing has shown that the estimates

of processing time need not be very accurate. Estimation errors of up to ±1 00% resulted in

little performance degradation. As expected, dramatic performance improvements were noted

in a test case in which the network was lightly loaded and the processors were moderately to

heavily loaded. Even so, there was a steeply diminishing return on the benefit of increasing the

size of the server pool beyond a fairly low limit of eight to ten servers. Communication delays

www.manaraa.com

19

were found to be intolerable for lightly loaded processors as the delay became a significant

percentage of the actual processing time.

The server selection scheme for Enterprise is considerably different than that of NCS.

There is a notion of expected server performance in Enterprise. The broadcast mechanism and

the number of steps required to select the server detract from the elegance.

Emerald System

The Emerald System is a current research project at the University of Washington 1141.

It is composed of a language and a run-time environment. Emerald supports distributed

programs via objects which can transparently move between network nodes. Objects may

either be static data structures or live processes. One of its goals is to achieve performance

which is comparable to traditional RPC performance without adversely impacting the local

operation performance. Emerald offers essentially the same set of advantages as does NCS:

load balancing, simplified data movement, potential for enhanced run-time performance.

Further, Emerald can reduce the interprocessor communication load by moving the

communicating processes to the same node. In a traditional RPC environment, the caller is

blocked while the server is executing the call. Within Emerald, the entire process moves to the

remote node and continues execution.

An Emerald object associates unique name with a data representation specification, a set

of operations which may be performed on the object, and an optional process. The Emerald

compiler is context sensitive such that it will produce different object implementations

depending how an object is used; not all objects are assumed to be global nor mobile. The

roving objects are located using a forwarding address. Each node has an access table which

maps objects to residency. An access table entry is created for each object that has a remote

reference. If an object moves, the source and destination nodes update their access table

www.manaraa.com

20

forwarding address field for that object. No other nodes take any action. When other nodes

require access to a remote object, they traverse the tree of access table forwarding addresses.

The constraints for implementing the Emerald style mobility are more severe than for

NCS. Emerald requires homogeneous nodes, i.e., trusted nodes with the same instruction set.

In its current implementation, all Emerald processes resident on a single node are mapped into

the same virtual address space. These restrictions make the Emerald approach unsuitable for

the CNDE environment.

PAX-1

The PAX-1 product from VXM Technologies, Inc strives to create a network

supercomputer in the VAX-VMS environment [16, 23]. PAX is an implementation of Linda­

C. Linda-Cis an extension to ANSI C which provides constructs for writing explicitly parallel

programs. Carriero and Gelernter provide an excellent summary of the Linda model in their

1989 paper [7]. In comparison to NCS, PAX is also suitable for medium to coarse grain

parallel processing applications though it is not based on a RPC mechanism nor on a

ubiquitous upper layer transport protocol such as TCP. It removes much of the overhead of

interprocessor communication by directly utilizing the Ethernet data link layer.

P AX-1 processes interact via tuples stored in a distributed shared memory called tuple

space. Tuples are ordered sets of parameters which may be either active data structures, i.e.,

processes or they may be passive data structures. Only passive tuples are currently supported

in PAX. Tuples may contain wildcards which specify data types but not actual values. Tuple

space is accessible from all nodes in a PAX-1 network. Tuple operations are: out. to insert an

entry into the tuple space; in, to retrieve a tuple from tuple space; rd, to read a tuple but the

tuple is not removed from tuple space. Out operations are non-blocking. If no matching tuple

exists when an in is attempted, the requestor will block until a match appears. If more than one

match exists, the one returned is chosen non-deterministically. If more than one server is

www.manaraa.com

21

blocked on an attempt to in the same tuple, their eventual service ordering is non-detenninistic.

This implies that the algorithm used to award the tuples to the servers is not "fair"; some server

may never be activated.

Servers will typically in a tuple which matches their template. If a match is found, it is

removed from the tuple space, operated upon, and a new tuple is inserted. The client posts

several entries into the tuple space requesting some service and waits for the results to be

asynchronously posted back into the tuple space by a set of servers. The client has no

knowledge of the server locations or even the number of servers. Additional servers may be

added to the network to dynamically increase the system throughput. In a future version of

PAX, it will handle heterogeneous vendor platforms, incorporate support for UN IX, and offer

transparent data translation between systems. One shortcoming in the implementation is an

inability to detect a server crash after it has removed a tuple but before it has posted the

resulting tuple. A developer must explicitly handle this case with a timer and a signal handler

function to prevent the client from blocking on an in which will never occur because the server

has crashed.

The ISIS program is a current research and commercial project at the Cornell University

[5]. It is a library and development environment for distributed applications. A client may

reference servers via an opaque data structure known as a process group name. The client need

have no knowledge of the number of group members nor their location. The group

membership can grow and shrink dynamically and a process may belong to arbitrarily many

groups. ISIS requires lightweight tasking to implement some functions. In this context, an

ISIS task looks like any other C function but with the distinguishing feature that the ISIS task

can be invoked in response to events such as the receipt of a message. Multiple ISIS tasks may

be executing concurrently. The task modules must be coded in a fashion to protect the global

www.manaraa.com

22

variables from unintentional corruption by another executing task. ISIS guarantees that all

process group members receive message events in the same order. Since the events appear in

the same order, the group members are said to be virtually synchronous. This greatly

simplifies the design of distributed applications.

ISIS is well suited for controlling parallel processing applications which employ a divide

and conquer strategy since one message can be simultaneously received by all servers which

are members of a particular process group. Like NCS, ISIS also lacks a deterministic server

selection mechanism. Future versions of ISIS will address noted problems with sluggishness

and scaling difficulty.

www.manaraa.com

23

CHAPTER 3. DESIGN CONSIDERATIONS

The preceding chapter illustrated some of the differences in the capabilities of some

network computing architectures. Some of the differences are viewed as deficiencies while

others are desirable characteristics. In this chapter, I provide the framework for an architecture

which is layered on NCS yet has some of the benefits of the other systems as well. The first

section describes the assumption under which this design is intended to operate. Subsequent

sections discuss the major components.

Assumptions

A divide and conquer strategy is not particularly applicable to some of the existing CNDE

model software. Thus, a network computing solution is not appropriate for all of the CNDE

computing needs. Such programs are not under consideration for this project. Often,

sequential programs have sections which can be adapted to perform multiple independent

calculations. These sections of code must be analyzed so that data dependencies are identified

and removed so that the code within a section can be executed in parallel. Presently, this is

largely a manual process. As a starting point for this process, commercial utilities are available

which identify which routines should be modified to leverage the improvement offered by

parallel processing. The UNIX utility for this purpose is prof. It displays the percentage of

time that an application spends in its subroutines. This is exactly the type of information

required but it doesn't work well on the Apollo. Instead, the Apollo utilities for program

analysis are a layered product called the Domain Performance Analysis Kit (DPAK). DPAK is

composed of the Histogram Program Counter (HPC) tool and the Domain Perfom1ance

Analysis Tool (DPAT). HPC periodically samples the program counter while a program is

executing. After the program completes, a histogram is displayed which indicates the

frequency of the PC being in specified address regions. The DPA T operates by periodically

sampling the program calVretum stack while a program is running. DPAT also records

www.manaraa.com

24

parameters such as 1/0 activity and page faults. When the analysis is complete, the relative

amount of time spent in each of the program functions is displayed. One can infer likely

processing bottlenecks from this information. DPAK tools do not provide any advice on how

amenable the functions are to parallel processing nor how to con vert them.

Much has been written about tools to analyze and convert scientific Fortran programs to

multiprocessor machines. Ottenstein gives a good survey of the techniques for detecting

parallelism and he includes an extensive list of references in his 1985 paper [20]. The Kuck

Analyzer Package (KAP) developed by Kuck and Associates, Inc. is a Fortran preprocessor

which does a thorough dependency analysis to identify program regions which may be safely

executed in parallel. Some versions of the KAP allow the user to specify a minimum amount

of parallel activity which must be present in order to invoke the parallel code [22]. This is

intended to be used to force sequential execution of loops which could be done in parallel bur

should not because the overhead cost exceeds the gain of the parallel computation.

A related design issue that must be addressed in a network computing environment is the

proper selection of the client and server functional partitioning. The partitioning must retlect

the architecture grain size. The overhead cost of doing a RPC is orders of magnitude greater

than the cost of doing a local procedure call. This implies that to be effective, the client should

make relatively few RPCs with relatively lengthy computations on the server such that the

communication overhead becomes a small percentage of the overall execution time. In the

Apollo environment, a local procedure call can take on the order of tenths of microseconds

while a trivial RPC can take on the order of milliseconds. Both were measured by repeated! y

performing null function calls in a tight loop.

The client /server communication delay is variable since the underlying technology is

Ethernet. Ethernet is known to perform best on lightly loaded networks. Some recent

performance measurements by the Digital Western Research Laboratory have shown that

www.manaraa.com

25

Ethernet performs quite well on more heavily loaded networks as long as the packet size varies

[23]. Periodic samples of statistics collected from the CNDE Ethernet bridge have shown that

under current conditions, the CNDE network is very lightly loaded. For problems of the

appropriate grain size for this architecture, client/ server data communication latency relative to

the server execution time is expected to be small.

Finally, I assume that there is no requirement to augment the security of NCS

transactions. Packet checksums are computed by the RPC run-time library to ensure the

integrity of a received packet. Servers do not maintain lists of acceptable clients; all valid

service requests are accepted. A server is designed to handle at most one active client. There is

no requirement for logic to prevent interference from multiple concurrent server tasks within a

server process.

High Level Design

Figure 4 depicts the run-time configuration of a generic application which consists of a .

multi-threaded client and three servers distributed over three nodes. Each server program is

started at boot time. The client program is started on demand much like the entire single

threaded program is currently started. Both server nodes are running the Processor Loading

Daemon (PLD) and the LLBD. A GLBD is present on the client node and one of the server

nodes. The client program created two tasks. Each task communicates with a server via a

RPC.

During initialization, the server program queries the network nameserver to determine

hardware information for the host on which it resides. The name server HINFO record for

each host has been encoded with a processor performance metric. Currently, the metric in use

is the host MIPS rating as supplied by the vendor specification data sheets. The server

formulates a location broker registration entry which encapsulates the performance metric.

After registering with the LLBD, the server enters a quiescent state awaiting RPC requests.

www.manaraa.com

Task 1

Task 2

GLBD: NCS Global Location Broker
LLBD: NCS Local Location Broker

26

PLD: CNDE Processor Loading Daemon
Client: CNDE Model User Interface (typical)
Server: CNDE Model Computation (typical)

Node B

Dark Line: Remote Procedure Call path
Light Line: Daemon data flow path

Figure 4. General Distributed Processing Configuration

www.manaraa.com

27

The PLD regularly measures the processing load on its host node. To reduce processing

overhead, not every load calculation results in a LLBD update. The algorithm to update the

LLBD is adapted from the algorithm used to propagate routing table updates in the ARPANET

[18]. The LLBD is updated only if the load is "significantly different" from the loading the last

LLBD update. The phrase "significantly different" means that the absolute value of the change

in the PLD load is greater than some threshold. The threshold is a generally decreasing

function of time which gets reset to its maximum value whenever a LLBD update occurs. After

every PLD measurement interval, the threshold value is decreased. Eventually, the threshold

could reach zero in which case an update will occur and the threshold will be reset regardless of

the load change. This algorithm was selected because large changes in the load are reponed

quickly and persistent smaller changes are reported eventually. If the load is significantly

different from the previously reported load, the PLD will retrieve all LLBD entries which match

its template type. If any entries are found, they are updated with the new load information and

reinserted in the LLBD database.

A user may manually update the LLBD entry annotation field to mark a server "off-line"

via the I etc/ncs/ lb _ admin utility. If a server is marked off-line, the server will continue

to process chores from the current client but future clients will not use this server. The use of

this capability is limited to special situations such as a case where the machine is scheduled to

go down for maintenance and an orderly server shutdown is desired.

When a client program requests server location information from the LLBD, it

automatically receives the processor performance metric and the processor loading infom1ation.

No separate query is needed to determine the load. Also, note that the client does not use a

broadcast mechanism to initiate the server selection process.

The organization of existing CNDE modeling programs differs significantly from the

organization which is required for this environment. The top section of Figure 5 shows a

www.manaraa.com

28

Old Program Structure

Program Initialization

DO while
Call computeAll(...)

End do

Display Results

New Client Structure

Client Initialization

InitNCS

DO while
Call doPar(computeAllCode, ...)

End do

SynchServers

Display Results

Figure 5. Program Structure

New Server Structure

Server Initialization

Register Server with LLB

Wait for RPC

Switch (RPC)
case computeAll:

execute computeAll
case otherFunction:

end Switch

www.manaraa.com

29

simple program which has an organization similar to current CNDE programs. It contains

initialization functions, a main processing loop and a set of functions to display the results of

the computation. In contrast, the lower section of the figure shows the high level organization

of the server and client programs. The server program does its own initialization and waits for

a RPC to arrive. When it does arrive, the RPC run-time library invokes the imended function

and then returns the results to the client. The client program performs initialization and display

functions. The computation load is shifted to the server with the three functions shown in

boldface in the figure.

The three callable functions are intended to easily identify and isolate the parallel regions.

They also serve to mask the details of multi-threaded execution from the client application code.

A call to the function initNCS identifies the desired functional interface and the requested

number of servers. initNCS performs the location broker lookup, initial server selection. and

starts a client task for each available server. A call to the doPar function identifies a set of

parameters for a chore to be executed. The function doPar queues the chore and returns

immediately without waiting for the chore to be processed by some server. A call to the

syncServers function causes the client Distinguished Task to block while waiting for all client

sub-tasks to complete. The sequence initNCS, doPar, and synchServers may be executed

more than once within one program.

The Server Selection Algorithm

The server selection algorithm has two modes of operation: one during parallel

processing initialization, i.e., during initNCS, and the other while a client is distributing chores

to a set of active servers. In the first case, a server is thought to be superior if its perfonnance

metric divided by the current load is greater than the corresponding ratio for another server. A

LLBD query returns a set of server records. The server state, performance metric. and the

current load information are extracted from entries encoded in the LLBD record annotation field

www.manaraa.com

30

for each server. If the server state is marked off-line, that server is eliminated from further

consideration. The ratio of performance metric to current load is computed for each potential

server and the results are inverse sorted such that the highest ratio servers are listed first

followed in decreasing order by lower performance workstations. This mode is used as an

estimate of which servers will perform better. If the client call to initNCS limits the requested

number of active servers, the LLBD list is trimmed on this basis.

The second mode of server selection is actually a technique known as self-scheduling. In

this case, the total client job to be processed in parallel is divided into a number of chores. The

number of chores is initially large relative to the number of processing elements. Each server

obtains a chore and when finished with that computation, it obtains and performs the next

unassigned chore. Self-scheduling was selected because it automatically adapts to the run-time

server response conditions and does not rely on potentially stale or irrelevant load infom1ation.

The load information could be stale if a significant amount of time had elapsed since the

initNCS function was invoked. In other words, current performance data is preferred over a

guess based on the location broker information. The self-scheduling technique is more flexible

than a pre-scheduled technique because the programmer does not need to manually try to

balance the computation load. The pre-scheduling or a-priori load balancing technique was not

used because it is not a viable method when the execution time for each chore can vary sharply

because data dependencies may cause different conditional branch paths to be executed. Pre­

scheduling is also difficult to apply when the processing elements do not have uniform

computation speed, as in this network.

The server selection algorithm must include special logic to continue to dispense chores

until all chores have been successfully completed. This means that near the end of processing,

some servers will be assigned redundant chores. In other words, a presently active chore will

be assigned to an idle server. All redundant servers are aborted when any server completes the

www.manaraa.com

31

chore. This is necessary to prevent a client deadlock in the event that all servers except one

have terminated normally and the last active server crashed while processing the last chore.

The chore selected for redundant assignment is the chore presently assigned to an active server

with the latest estimated completion time. The estimated completion time for each server is

computed as the worst case chore processing time minus the time elapsed since the server

started the current chore. This logic requires the client to keep a small amount of accounting

history for each active server. Since the accounting information must be accessed by each

client task, a critical section is declared to protect the accounting information from corruption

by multiple writers.

Figure 6 illustrates a server selection scenario which includes redundant chore assignment

and a server abort. The server on the left processes chores much more quickly than the server

on the right. Note that the gaps between server chores have been enlarged for diagram clarity.

The server utilization would typically be much higher.

The Chore Queue

A temporary, dynamically allocated queue is used to spool the function arguments of

doPar requests. The purpose is to allow the client DT to request service without causing it to

block while waiting for the server to complete the request. The request is placed on the queue

and control returns to the DT before a server has completed execution. ln addition to pointers

to the previous and next queue entries, the queue entry contains a pointer to a structure which

contains all of the necessary arguments to invoke the RPC. Queue entries may also be inserted

during client task fault handling to ensure that the request is eventually serviced even though a

particular server may have crashed before completing a request that it had previously removed

from the queue. Queue entries are removed when a server becomes available to service another

RPC as in the self-scheduling discussion above.

www.manaraa.com

Serverl

~

Start;
tasks I
created!

""'3 ...

chore 5 I I
restart~ 1
on 1
serverl I

Done;
tasks ~
terminated

I
I

' estimated
completion
time for
chore 5

T on server2.
Time

32

Client

~kl

I

I
I

=1
I

=1

'f--
I

I
c
I

-

Server2

::5 ..

..,_ Server2
Aborted

..,_ Time that
server2
would
have
finished

The client has 5 chores to distribute among two servers. Chores are assigned on a
first server available basis. After chore number 5 has been assigned, serverl
completes chore 4. The client estimates the completion time for all other active
chores. Serverl restarts chore 5 and Completes it before server2. The client issues
an abort to server2. The job is now complete; client tasks are terminated.

- - -- RPC or return D Server processing chore

RPC abort message D Redundant server processing chore

- - - - time (22] Time saved by aborting server

comments ~ Client serial processing

Figure 6. Server Selection Scenario

www.manaraa.com

33

Within a DO loop, calls to subroutines may have more than one argument which depends

on the loop index value. Either the complete set of function arguments can be temporarily

stored and accessed when a chore is to be assigned or all arguments can be computed from the

index value as the chore is being assigned. The queue mechanism was selected to facilitate

easier integration into existing code. There is a cost for maintaining the queue which would be

avoided if the alternate approach were taken.

Fault Handling

All fault handling for this project is implemented with the Portable Process Fault Manager

(PFM) library routines. PFM is a builtin package for Domain/OS. On other platforms, the

PFM is a subset of the NCA product distribution. The PFM is divided into two fault

management mechanisms: cleanup handlers and fault handlers. The major difference between

the two is that fault handlers can return to the point at which the fault occurred and cleanup

handlers cannot. A cleanup handler will resume execution at the first instruction following the

cleanup handler code in the source file. Normally a cleanup handler would be placed at the

beginning of a function so that if a fault does occur, and it is deemed non-fatal, all of the

statements in the function would be re-executed thereby resetting local variables. The handlers

can be chained such that the most recently declared handler will execute first, followed if

appropriate, by the next most recently declared, and so on. If the default system supplied fault

handler is invoked, the entire process will terminate. The cleanup handler logic must be

carefully crafted such that asynchronous signals such as SIGKILL or SIGQUIT still have the

desired effect on the program.

The project implementation exclusively uses cleanup handlers to simplify there­

initialization process after a fault has occurred. Each client and server program declares a

cleanup handler. Further, each client task also defines its own cleanup handler. The RPC run-

www.manaraa.com

34

time faults are managed within the task. Unexpected faults, i.e., faults that cannot be handled

are passed to the next fault handler in the chain.

The client task cleanup handlers have been implemented to allow two types of faults. The

first is an intentional server abort and the other is a NCS communications failure. A server will

be intentionally aborted if the RPC results have already been returned by another server. NCS

communication failures are treated as transient failures and the call is tried again. If a particular

server gets too many communication failures, it is marked as "dead" and is no longer used for

the current set of chores. The server process cleanup handler is mainly used to unregister the

server from the location broker data base before the process terminates. This ensures that

subsequent LLBD lookup requests will return only active servers.

Cross Language Considerations

The existing CNDE numerical model software is written entirely in Fortran. The

software developed for this project was written in the C language for compatibility with the

NIDL generated stub files which are also C source files. The two languages have some data

representation incompatibilities. C has no native definition of complex variables; Fortran does.

The simplest solution in C is to explicitly define a new type which is a structure composed of a

floating point real component and a floating point imaginary component. The type double

complex is defined similarly except that both structure elements are double precision.

Fortran subroutine calls always pass parameters by reference. The C language supports

parameter passing by value and by reference. All C functions which call Fortran subroutines

must restrict argument passing to conform to Fortran conventions. By default, Fortran and C

access array elements in a different order. Fortran is column major, i.e., complete columns are

stored sequentially in memory. C array storage is row major. For this project, the storage

arrangement is inconsequential since the C routines do not operate on the arrays passed to and

from the Fortran subroutines. The consistent specification of an array starting address and the

www.manaraa.com

35

number of elements is sufficient to allow proper communication from the client Fortran to C

stub, then across the network and finally from the server C stub to server Fonran.

In UNIX, the /bin/f77 Fortran compiler will append an underscore to any external name.

This is important in the context of Fortran making a subroutine call to a C function. In order

for the linker to resolve the function name, the C routine must have an explicit underscore

appended to the function name since the C compiler does not do this automatically. For

example, the Fortran statement "CALL initNCS(...)" invokes a function which must be named

initNCS_ in the C source file. Alternatively, on the Apollo the DOMAIN Fortran compiler

(/com/ftn), does not append the underscore thus the C routines must not have it. There are no

function naming incompatibilities for the reverse case of a C function calling a Fortran

subroutine.

Variable Argument Lists

Variable argument lists are used to implement a consistent interface to the doPar function.

The number, order, and the type of arguments to two distinct chore processing functions may

be completely different yet it makes sense to have one function which handles all chore request

queueing. The doPar function handles differences in calling semantics with a variable

argument list declaration. It will accept any number of arguments of any type. The only

restriction is that the first argument be an integer function code so that the rest of the argument

list can be properly popped off the call/ return stack. The arguments must be pulled off the

stack manually since the compiler has no knowledge of the programmer's intentions. In this

application, the function code is the controlling variable in a switch construct. Within the

switch, cases are defined for each function code. In each case, the arguments are known and

they can be retrieved from the argument list and stored in a temporary stmcture. The address

of the argument structure is copied to the queue element data field and the queue element is

inserted on the chore queue.

www.manaraa.com

36

CHAPTER 4. IMPLEMENTATION

This chapter contains the detailed description of the software implemented for this

project. First, the application layer support software is described. The support software

includes the status and error logging utility functions, the processor loading daemon, the server

initialization functions, and the client code to perform server selection and multi-tasking. The

structure of the test programs is also described.

Status and Error Logging Utility Functions

The status and error logging functions were written to capture the output from programs

which typically run in the background, i.e., the daemon and the servers. Both s t dou t and

stderr file descriptors are redirected to program specific files in the /usr /tmp directory.

The files are opened in the append mode so that the information from prior executions is

retained. The errorLog function accepts a character string and writes it to the stder r with a

timestamp. It is possible to follow the call to errorLog with a call to the C formatted output

function fprintf to record additional information such as parameter values or trace text. All

fault handlers implemented for this project use both mechanisms to record the time and the fault

status code. The log message timestamp facilitates tracing a sequence of event messages on

multiple nodesl; this has proven to be an invaluable debugging aid. The log files may be

accessed while the associated program is running via the UNIX tail command.

The Processor Loading Daemon

The processor loading calculations are performed in a distributed autonomous manner.

Each participating node executes its own instance of the daemon. The processor load

information is periodically attained by spawning a shell which executes the BSD /bin/ csh

command uptime. The uptime command produces a string which contains the processor

lThis works to the extent that the individual node clocks are synchronized. All CNDE Apollo nodes run
the UNIX time daemon (timed) for this purpose.

www.manaraa.com

37

uptime, i.e., the elapsed time since the system was booted and the load averages for the

preceding one, five, and ten minute intervals. The shell output is piped into the PLD which

parses the string to obtain the one minute load average. This number represents a sliding

average of the number of UNIX processes which were in the operating system run queue

during the last minute. For this project, I assume that all users processes are running at the

same priority since the UNIX priority mechanism is not well supported in Domain/OS.

The load information is maintained by the host operating system. A more direct path to

acquire the information from a bona-fide UNIX system is to read it from the UNIX system

table via the psuedo-device I dev /kmem instead of spawning a shell process l9J. This device

is not available in Domain/OS. An undocumented and unsupported alternative on the Apollo is

the procl_$get loadav system call which returns the required information but it is subject

to change without notice. Thus, the awkward shell mechanism was selected for

implementation because it is the only supported means to acquire the desired information on the

Apollo.

The cndeType has been defined as a particular static UUID. When a server implemented

in this project registers with the LLBD, it must do so with the object type field set to the

cndeType. The PLD formulates a single LLBD query for all cndeType entries to obtain records

for all relevant servers and exclude those LLBD records which are not maintained by the PLD.

From a purely organizational point of view, it may desirable at some point in the future to

declare and process additional LLBD object types. At present, one object type is adequate for

the test application programs.

The 64 character LLBD entry annotation field is partitioned into five text sub-fields for

this project. The length and organization of the sub-fields is shown in Figure 7. The PLD

information is inserted into the load sub-field for each record received from the LLBD. Each

LLBD entry is re-registered to cause a location broker database update.

www.manaraa.com

38

Object UUID uuid_$t

16 bytes

Object Type UUID uuid_$t

16 bytes

Interface UUID uuid_$t

16 bytes

Global/ Local Flag ulong

4 bytes

Annotation char

64 bytes

Socket Address Length ulong

4 bytes

Socket Address socket_$addr_t

DDS: 12 bytes, IP: 8 bytes

Legend:
T: Token 2 bytes
L: Load 5 bytes
B: Blank 1 byte
P: Performance 2 bytes
S: State 2 bytes
E: Terminator 1 byte

..._ Text
50 bytes

Figure 7. LLB Entry Record Annotation Field Encoding

T L B p B s E
2 5 1 2 1 2 1

www.manaraa.com

39

The current PLD update algorithm implementation specifies a load sample interval of 30

seconds and the maximum threshold value value is one job. After a measurement period, the

threshold is decremented by an amount that ensures that the threshold value will reach zero

after 300 seconds have elapsed. This means that at least one update will occur every five

minutes. In comparison, the ARPANET routing table update algorithm implementation has a

ten second measurement interval and at least one update will occur every minute [18]. The

values were selected as a first guess at reasonable parameters for a quasi-static system. The

parameter values which were selected may be adjusted as the run-time environment becomes

known; this tuning process remains for future development.

An additional duty imposed on the PLD is to detect and remove LLBD entries which have

become invalid. When the PLD initializes itself and about once per day, it verifies that the

entries retrieved from the LLBD are valid by performing a NCS rrpc_ $are_you_there ()

query to the server address listed in the LLBD entry. If the server does not respond within the

NCS timeout period, the entry is deleted from the location broker database. Each server

developed for this project declares a cleanup handler which will remove the server's entries

from the location broker database when the program terminates. This handler may not get an

opportunity to run if there is a catastrophic node failure such as a shutdown induced by a local

power outage. The PLD ensures that the old LLBD entries are removed when the node and the

PLD are restarted.

The PLD has been implemented with a selectable level of detail recorded in the program

log messages. When enabled, the messages are written to stderr which is directed to a file

as described above. There are three levels of logging. Level zero indicates that only fault

information and no status information is to be written to the log file. Level one means basic

information is recorded and level two means detailed traces are to be recorded. By default,

level zero is enabled. In the spirit of the BIND server selectable logging mechanism, the levels

www.manaraa.com

40

can be adjusted while the program is running by delivering UNIX s IGOSRl and/ or

S I GOSR2 asynchronous signals to the PLD. The s IGOSRl signal causes a level increase and

s IGOSR2 resets the level to zero.

The Server Structure

The server program entry point is the initialization routine developed for this project.

During server initialization, a BIND server resource record query packet is assembled to

encapsulate a request for the HINFO record pertaining to the server host. The server sends the

query packet to the nameserver and awaits a response. The HINFO resource record contains

one field for the CPU identification and one field for the operating system identification ll 0,

19]. Both fields are set by the system manager when the node is configured as a net work

member. The processor performance metric has been encoded in the HINFO record by

appending the metric to the CPU field. The buffer returned from the nameserver is parsed to

extract the metric from the CPU field. The metric is inserted into a sub-field which has been

allocated in the LLBD entry annotation field as shown in Figure 7.

The server continues the LLBD entry initialization by setting the processor loading sub-

field to one and setting the current state sub-field to "UP". It generates a new UUID and loads

the UUID into the object instance field. The LLBD type field is set to the cndeType. Then the

server initializes all of the RPC function vectors and registers each interfacel with the LLBD.

If for any reason the LLBD record cannot be properly initialized, the server ·will terminate to

prevent the PLD from parsing malformed LLBD annotation fields.

Each interface exported by a server must have a cleanup handler and an abort function

declared. The abort function is necessary to support chore abort requests from a client. The

abort function delivers a CPS signal to the server task which is actively processing a chore.

1 Recall that in the NCS context, an interface refers to a collection of related functions; each RPC r unction
exported by a server does not require its own entry.

www.manaraa.com

41

The aoort function returns to the caller and the active server task enters the cleanup handler.

The cleanup handler validates the chore abort signal, tenninates the task, and passes the abort

status back to the client task which had initiated the chore RPC. The server then enters a

quiescent state awaiting another RPC from a client.

A more elegant implementation of the server abort function would be an abort capability

built into the RPC run time library which would be callable from the client. In fact, such a

function exists, but it exists in name only. An invocation of the

rrpc remote shutdown () function returns a status code which is translated to mean

"function not yet implemented".

The Client Structure

The majority of the software written for this project is a collection of client support

functions. This is expected because the client does all of the coordination and book-keeping

for parallel processing. The client program entry point is located in the application program per

se; it is not the initNCS function. The functions discussed in this section are organized in the

hierarchy that they are used to implement the initNCS, doPar, and synchServers functions.

The two arguments passed to initNCS are the function code and the requested number of

servers. The function code is used as the control variable to a switch construct. Within the

switch, cases are declared for each valid function code. For each case, the object interface

UUID is detennined and the abort function pointer is set. The function code was used instead

of the interface UUID directly because the UUIDs cannot be compared for equality in the

switch. The abort function is also interface specific; it must be set for each case.

Potential servers are identified by sending an object interface query packet to the LLBD.

Each server record received from the LLBD has the server state, load, and the performance

metric encoded in the annotation field as described in the PLD and server sections. The client

reads the state sub-field of each LLBD entry to verify that it is marked "UP". If it is not, the

www.manaraa.com

42

entry is discarded. Then, the client sons the set of remaining entries using the BSD qsort

utility. Entries are sorted based on their processor performance to processor loading ratio. The

highest ratio servers appear first in the list returned from the qso rt operation. A RPC handle

is created for each server up to the lesser of the number of servers requested and the number of

servers available.

The server accounting table is cleared and one client task is created for each server. Each

task begins executing immediately and establishes its own cleanup handler. Each task enters a

self-scheduling loop to retrieve an entry from the chore queue and process it. The loop is

exited when there are no more chores to compute. Then, the task sets its completion status,

releases the cleanup handler and exits.

The doPar function accepts a variable argument list. Once again, a switch based on the

function code is entered. Each case of the switch allocates the required amount of temporary

storage for the function arguments. The function arguments are copied from the variable

argument list to the temporary storage structure. Next, the chore queue is locked, the address

of the temporary storage is inserted on the queue with the BSD ins que utility and the queue is

unlocked. The doPar function returns to the caller without waiting for the chore to be

computed.

The client application calls synchServers to establish a rendezvous after all calls to doPar

have been completed. The synchServers function sets a global flag which indicates that no

more new chores are to be enqueued and waits for the client tasks to complete processing. As

each task sets its completion code, the synchServers function releases the task. When all tasks

have terminated, the synchServers call returns and the client program continues processing

with a single thread of execution.

The logic used to dispense chores is shown in Figure 8. The basic flow is described

here. If there is a chore queue entry, remove it with the BSD remque utility. If there is no

www.manaraa.com

Begin:

End:

43

lock choreQ
if (!first_time_for_server)

update ServerTable. worst_case_time
free(memory used for previous set of call arguments)

if (current_server_state == SERVER_RESTART) {
!* must be the first one finished this chore *I
abort redundant servers, set their state to SERVER_ABORT

current_server_state = SERVER_IDLE

if (choreQ has an entry) {
remque; load pointer to arg structure into ServerTable
update ServerTable.startTime, state, numberServiced
unlock choreQ
return (VALID)

} else if (!synchronizingServers) { /* more chores expected *I
unlock choreQ
return(W AIT_ TRY _AGAIN)

/* must redundantly start a currently active chore */
scan server table for chore with the latest estimated completion time
if (no servers are active) {

set the global_done flag
unlock choreQ
return (DONE)

set ServerTable.state to SERVER_RESTART in current and worst
case server.

update ServerTable.startTime, numberServiced for current server
unlock choreQ
return (VALID)

Figure 6. Chore Distribution Psuedo-Code

www.manaraa.com

44

queue entry but more are expected, return a function code which instructs the requesting task to

wait and try again later. Otherwise, the redundant chore logic is activated. Note that a mutual

exclusion lock is required to prevent the asynchronous tasks from corrupting the global chore

accounting data structure. Since BSD does not suppon semaphores, the lock is set and cleared

with Domain/OS system service calls mutex_ $lock and mutex_ $unlock l4]. The chore

accounting data structure is a table which indicates the address of the current argument set, the

server state, the worst case processing time, and the current chore stan time for each known

server.

Test Programs

Mandelbrot

The client program for the mandelbrot application is composed of three major pans. The

first pan creates a display window on the workstation and loads a color map. The second part

performs the initNCS, loads the chore queue via calls to doPar, and invokes tasks. The third

pan is the task function itself which controls a server, gets chores, and draws each scanline on

the monitor. Each server program is structured as a single block of code which registers its

interfaces and waits for a RPC to compute the scanline pixel values. To analyze the behavior

of the system when the server computation time is very large relative to the RPC data transfer

time, large RPC processing time can be simulated by anificially increasing the number of times

that the scanline is computed for each RPC.

Lin pack

The LINPACK function selected for evaluation in this architecture is the ZGECO

subroutine which factors a double precision complex matrix and estimates the condition of the

matrix. The psuedo-code for the ZGECO subroutine and its subroutine calling hierarchy are

shown in Figure 9. This section discusses the analysis process for the existing software and

www.manaraa.com

ZGECO Structure

Begin:

End:

Call ZGEFA

Loop:
Call ZDSCAL

EndLoop:
Loop:

Call ZDOTC
Call ZDS

EndLoop:
Loop:

Call ZAXPY
Call XDSCAL

EndLoop:
Call ZDSCAL

Loop:
Call ZDSCAL
Call ZAXPY

EndLoop:

ZGEF A Structure

Begin:

End:

Loop:
IZAMAX

Call ZSCAL

Loop:
Call ZAXPY

EndLoop:
EndLoop:

Figure 9. LINPACK Psuedo-Code

45

! factor matrix

!scale vector by double precision scalar

! Complex dot product
! scale vector by double precision scalar

! constant *vector + vector
! scale vector by double precision scalar

! scale vector by double precision scalar

! scale vector by double precision scalar
!constant *vector+ vector

!Get index of element with max value
! scale vector by complex constant

! constant *vector + vector

www.manaraa.com

46

identifies likely candidate functions for parallel execution in multiple servers. A prof

analysis indicates that the ZGECO execution time is dominated by the time spent in the ZGEFA

function which factors the matrix. ZGEF A in turn makes repeated calls to the ZAXPY

subroutine to scale a vector and add it to another vector. For each ZGECO invocation, there is

only one call to the ZGEFA function. Clearly, this cannot be parallelized. Within ZGEFA

however, ZAXPY is called within a loop. Each ZAXPY call can be safely execmed in parallel.

The execution time for ZAXPY is expected to be a linear function of the number of vector

elements since the computation for each element in the resultant vector requires exactly four

multiply and four addition operations. To determine if the ZAXPY routine should be

implemented as a RPC function, some single processor execution time measurements were

collected for various size vectors on several node types. On the DN4500, the ZAXPY

execution time for a 100 element vector is 2.5 msec. On the DN10040, the same computation

requires 250 jlsec. The other consideration in evaluating potential RPC candidates is the

of the interface or the number of bytes which must be transferred in each direction during the

RPC. Let E be the number of vector elements. Then the size of the data which must be

shipped to the server is given by S = (2*E + 1) * sizeof(d_complex) + 3 * sizeof(int). The

amount of data which is returned to the client from the server is given by C = E

*sizeof(d_complex). The total data transferred is T = S + C :::: 3 * E * sizeof(d_complex).

On the Apollo, the size of a double precision complex number is 16 bytes thus the total data

transferred for a 100 element ZAXPY operation is approximately 4800 bytes. A ZAXPY

prototype has been implemented as a single threaded client and server. The client has a double

do loop organization. The outer loop controls the number of vector elements and the inner loop

controls the number of ZAXPY operations for each vector size.

Intuitively, the ZAXPY RPCs have relatively large data transfer requirements and

relatively short processing time. No performance improvement is expected if ZAXPY were to

www.manaraa.com

47

be implemented in NCS. Test results which validate this analysis are reported in Chapter 6.

The overhead costs are simply too high; it will be seen that the performance actually degrades

substantially.

Extensibility

At the coarsest level, this architecture can be extended through the incorporation of

additional server nodes. The additional server nodes need not be binary compatible with the

existing CNDE nodes; the minimum requirements for a new node are that it supports TCP/IP

and NCS. If the node is to run the client, the CPS multi-tasking capability is required as well.

As the node is configured to be a member of the CNDE network, a properly formatted HINFO

record must be created and inserted in the BIND server database.

If additional functions are added to an interface which is already supported in this

architecture, then the only files that must be updated are the NIDL source files and the

application specific client and server routines. If a completely new interface is to be integrated

into this architecture, then in addition to the modifications for the previous case, source files

provided in this project must be updated to provide a new case in the initNCS, doPar, and the

task function. The utility functions are contained in object libraries and do not require

modification except for maintenance.

www.manaraa.com

48

CHAPTER 5. RESULTS

RPC overhead measurements in the CNDE environment

To establish the baseline from which analyses can be made regarding the RPC data

transfer time, performance measurements were made in the CNDE network. The overhead

measurement methodology was adapted from Franscisco and LaBossiere [11]. To measure

the overhead time, single threaded null RPCs were placed between client and server pairs

running on several combinations of node types. The RPCs transferred variable length arrays to

the server and from the server in both idempotent and non-idempotent (at most once semantics)

modes. The test results for each size vector were averaged over three trials in each direction for

both modes. The vector size ranged from zero to 10,000 bytes. The performance of the DDS

protocol versus the IP protocol was also measured in this manner. The nominal RPC

performance of several client I server configurations is plotted in Figure 10. Figure 11

compares DDS and IP performance for two cases.

The performance plots indicate that the overhead time is a nearly linear function of the

argument list size or the number of bytes transferred. The best case results occur when the

client and server are co-located on the DN10040. The cost is essentially a memory to memory

move. The DDS protocol performs slightly better than the IP. The difference is narrowed on

the DN10040 since the TCP daemon is not competing with the client or server for the

processor. One effect noticed during testing was that the NCS protocol performs best when

the client and server processor speeds are closely matched. If they are not, timeouts and the

associated recovery mechanisms degrade throughput.

Note that since this is an Ethernet environment, the transfer rates collected are to be

regarded as "nominal" rates. The actual rates could be much worse depending on the network

load. The testing was performed in a quiescent though not pristine environment. No other

users were logged in during the testing. No action was taken to specifically limit the other

www.manaraa.com

49

--o-- DN2500 DN4500 IP

50000

* DN10040 DN2500 DDS

40000

---fr- DN10040 DN4500 IP
30000

20000

10000

-a- DN10040 DN10040 DDS

o~~--r-~~--~-r~~T-~~~~-;

0 1000 2000 3000 4000 5000 6000

Argument List Size (Bytes)

Figure 10. Nominal Remote Procedure Call Overhead

www.manaraa.com

50

--f::r- DN2500 DN2500 IP

-m-- DN2500 DN4500 IP

--o-- DN2500 DN2500 DDS

* DN2500 DN4500 DDS

0 1000 2000 3000 4000 5000 6000

Argument List Size (Bytes)

Figure 11. RPC Overhead Comparison for DDS and IP

www.manaraa.com

51

background traffic which may have been present on the network. No NCS communication

failures were reported and the hardware network adapter device error counts remained constant

through the tests. The RPCs were performed with application level verification enabled such

that both the client and server explicitly computed checksums on the transmitted and received

data buffers.

Unpack Performance

The best case RPC overhead for a null argument list is approximately 5 msec. This

implies that the client could make a maximum of 200 calls per second. A more realistic figure

for the overhead when a total of 5000 bytes are transferred is 35 msec; or 29 calls per second.

Recall from Chapter 5 that the worst case ZAXPY computation time on a DN4500 was 2.5

msec for 100 vector elements; on the DN10040, the computation time was 250 11sec. One

hundred ZAXPY operations on the DN4500 require 250 msec. Single processor ZAXPY

execution times for various length vectors are shown in Figure 12.

Testing the ZAXPY operation for a single threaded RPC has yielded some rather

surprising results. The performance for several cases are plotted in Figure 13. Once again, the

best case is the client and server co-located on the DN10040. For 100 element vectors, the

execution time is 12.8 msec. DPAT analysis shows that neither the client nor the server CPU

were fully utilized suggesting delay due to memory contention. The execution time for the

client and server running on separate DN4500s yields better results than the client on a

DN4500 and the server on the DN10040. This means that the NCS error recovery

mechanisms for flow control errors between the client and the server cost more than the actual

vector computation.

These figures are now compared to the expected time for 100 ZAXPY operations

performed in parallel on the DN4500 and the DN10040. Note that during either the null RPC

call or the single processor ZAXPY performance measurements, the entire CPU was dedicated

www.manaraa.com

(.)
(!)

2000

~ 1000

(!)

6
E=

0 20

52

40 60 80 100

Vector Elements

Figure 12. ZAXPY Single Processor Performance

-l::r- DN4500

~ DEC5000

~ DN10,040

120

www.manaraa.com

50000

40000

30000

(.)

~ 20000
::i.

s
E=

10000

53

-!::r- DN4500 DN10040 DDS

• DN4500 DN4500 DDS

-o- DN4500 DN10040 IP

A DN10040 DN10040 DDS

0~-T--~~~~~~--~~--r-~~~

0 20 40 60 80 100 120

Vector Size

Figure 13. ZAXPY Remote Procedure Call Performance

www.manaraa.com

54

to that one job. In this case, two tasks would be competing for the same processor on the

DN4500. If the task time slice algorithm is fair, then the times listed above for data transfer

and computation on the DN4500 can be expected to double. Thus, the RPC overhead from the

DN4500 to the DN10040 becomes 70 msec and the execution time on the DN45(X) jumps to 5

msec. The execution time on the DN10040 remains at 250 IJ.sec. In the first 70 msec of the

parallel processing interval, 14 elements have been computed on the DN4500 and the data

transfer overhead time for one element has elapsed. At 70.25 msec, 15 elements have been

computed. At 140.5 msec, there have been 30 elements computed, at 210.75 there are 45

elements and so on up to all 100 elements at 471.5 msec. Note that this is nearly double the

250 msec required on the DN4500 alone. Doubling the execution time by increasing the

number of processors is clearly unacceptable. This problem does not map well to this

architecture because the transfer time is much greater than the computation time on either

processor.

Mandelbrot Performance

Most of the testing for this project was done with the mandelbrot application. The basic

functions of the server selection and fault handler mechanisms were demonstrated by

exercising the client and server programs and artificially inducing faults or marking a server

off-line with the /etc/ncs/ lb_admin utility. At the end of chore processing, the client

displayed statistics about the number of chores processed by each server, their worst case time,

etc.

Mandelbrot image generation times for a fixed set of 400 scanlines computed with

several client/ server configurations were measured and are shown in Figure 14. There are

several features of Figure 14 worth noting. First, the execution time on a single DN4500

workstation is an average of 454 seconds. Moving the client to the DN10040 causes a

decrease of 29 seconds or 6%. Augmenting this configuration with additional DN4500 servers

www.manaraa.com

55

C: 4500; S: 4500 (local)

C:1 0040; S: 4500

C:10040; S: 3 * 4500

C: 4500; S: 4 * 4500

c C:10040; S: 4 * 4500 0 ·-..... C<::$
;.....
;:j
0..0 C:1 0040; S: 3 * 4500 + 3 * 2500

tC c
0 u

C:10040; S: 4 * 4500 + 3 * 2500 ;.....
(!)
:>
;.....
(!)

Cl) C: 4500; S: 1 0040 -..... c
(!) ·- C:4500;S:2* 10040 -u

• Image Completion Time

C: 4500; S: 4 * 10040

C: 10040; S:10040

C:1 0040; S: 2 * 10040

0 100 200 300 400 500

Seconds

Figure 14. Mandelbrot Execution Times

www.manaraa.com

56

scales almost linearly: three servers produce an image in 148 seconds; four servers complete in

108 seconds. Further improvements are noted if three DN2500 workstations are added to the

test configuration. In this case, the total time is an average of 82 seconds for a total speedup of

82%. Note that the aggregate performance metric for the seven processors is 44. The metric

for a single DN10040 processor is 22. But the execution time for the ON 10040 server is 27

seconds. This number is slightly distorted by the fact that both the client and server are located

on the DN10040 and the intra-processor data transfer time is much less than the data transfer

time over the network as shown in the RPC overhead results section.

To test the network dependency, the client was moved to a DN4500 and tested against a

single DN10040 server and also tested against a set of four DN4500 servers. In the first case,

the execution time is 47 seconds; in the second, it is 118 seconds. Once again the ON I CX)40

performs well above a set of lower performance servers. Looked at another way, four

DN4500 servers driving a client on the DN10040 produce an image in 108 seconds and the

same four servers driving a client on a DN4500 produces an image in 118 seconds. The best

time obtained for a client on the DN4500 was provided by four servers running on the

DN10040. However, the difference between four DN10040 servers and two DN10040

servers was only two seconds. This is expected from a DPAK analysis since one ON 10040

server causes the DN4500 client to consume more than 50% of the host CPU and two

DN10040 servers cause the client to consume more than 90%. Above two DN10040 servers,

the DN4500 client was clearly saturated and could not keep up with the chores returned by the

fast servers. If the client were on the DN10040, the saturation problem still exists but it is not

as severe since the client processor capacity is much greater.

A version of the application was created to replicate the calculations within each server to

simulate compute intensive RPC calls. The data collected from these runs was used to

determine if the RPC overhead can be amortized over the computation periods to show even

www.manaraa.com

57

more significant speedup from the parallel processing. The relative performance of the same

test configurations showed no significant differences. One notable difference is the effect of

the slow server abort function in configurations which mixed a DN10040 processor with some

DN2500 and DN4500 processors. In almost every case where redundant chores were started,

the DN10040 processor finished first and the slow speed server was aborted. In a few cases,

the slow server·got enough of a "head start" to finish before the DN10040 server.

The PLD performance is included in this section because most of its evaluation and

analysis pertains to the Mandelbrot application testing. The log files indicate that the program

only occasionally encounters an error while trying to determine the load information from the

shell. The fault handler gets activated and the program recovers. In most cases, the load

threshold drops to zero causing an automatic LLBD update. While not specifically tested, the

CPU time charged to the processor loading daemon is on the order of 60 seconds of CPU time

per day. This figure was obtained by sampling the processor status while a PLD instance was

running. The processing time will vary with the number of cndeType entries in the location

broker database and the fluctuation in each processor loading.

To determine if the time for maintaining the chore queue is significant, tests were run

with and without these functions enabled. The cost for the chore queue management is

approximately two seconds on the DN4500 and one second on the DN10040 which was

deemed as slightly high but still acceptable. The server selection mechanism was further

demonstrated by utilizing a set of lightly loaded workstations to out perform a high

performance workstation which was moderately to heavily loaded. Four external jobs were

started on the DN10040. Then one mandelbrot server was started on the DN10040 and the

client was run on the DN4500. The total time for this processor and job configuration was 168

seconds. In this case, the loaded DN10040 performed slower than a set of four idle DN4500

servers which finished in 118 seconds.

www.manaraa.com

58

For this application, the number of chores serviced correlates well with the penom1ance

metric divided by the processor loading for server configurations which include DN45(X) and

DN2500 workstations. The DN10040 processor completed more chores than would have been

expected using this method. Even so, the method is useful because the ratio for the DN10040

is the highest and servers located on this processor do perform the best.

Problems Encountered

There were several problems noted in the Apollo development environment. The

problem with the most impact was that not all NCS functions are implemented in the RPC run

time library as pointed out in Chapter four. This caused the redundant server abort logic to

greatly increase in complexity. It also has a ripple effect which makes the integration of new

functional interfaces more difficult because an explicit chore abort function must be defined.

The NCS run-time library is not entirely bug-free. During the overhead performance

measurement testing, a few cases were encountered in which the client and server deadlocked:

both sides were active but neither made any progress on the call. The RPC should have

aborted due to either the packet retry count or ping count values exceeding their maximum

values. Also, NCS flow control mechanisms are not effectively implemented. When a fast

server and a slow client communicate or vice-versa, there is a significant amount of pinging

and packet retries. This does not occur to the same extent when the client and server

processing speeds are evenly matched.

The NIDL syntax is deficient in its ability to handle either more than one variable length

array or two dimensional arrays in a RPC interface definition. This problem was first noted by

Francisco [11]. The impact for this project was that the interface defined for the UNPACK

RPC tests forced the two variable length ZAXPY source vectors to be concatenated into one

larger array by the client and unpacked at the server.

www.manaraa.com

59

Another annoying aspect of the development environment was that the UNIX lint

utility cannot be effectively used on NCS applications. Lint fails with a segmentation fault

while processing one of the required NCS include files. If the suspicious header files are

excluded from the lint analysis, too many error messages are displayed for the utility to be

useful.

Some bugs were also noted in the implementation of the CPS and the PFM packages.

There were intermittent failures in the delivery of CPS inter-task signals which caused

problems in the server abort logic. Most signaling failures simply displayed a generic run-time

error message and left no traceback or core dump to assist in isolating the true cause of the

problem. Also, the CPS function used by a task to give up control of the processor does not

behave as described in the release notes. This has the effect of causing all chores to be queued

before any chores are be assigned to servers. The PFM cleanup handlers occasionally fail to

execute for no externally apparent reason. This problem was detected when the servers were

stopped and their entries were not removed from the LLBD database even though a handler had

been successfully established to remove them. This led to increased complexity in the PLD to

periodically verify that the LLBD entries do indeed represent functional servers.

Another problem encountered but not directly addressed is the issue of portability. The

multi-threaded client RPC code developed on the Apollo is not directly portable to other

workstations which do not support CPS. Lack of an equivalent mechanism elsewhere would

result in single threaded applications which would at best attain close to the performance of the

highest compute power server in the network. In retrospect, the tasking mechanism was a

poor choice because of the portability considerations. The root of the problem however is that

the blocking RPC semantics are not inherently well suited for parallel processing.

www.manaraa.com

60

CHAPTER 6. CONCLUSIONS

Summary

This thesis describes a new application layer architecture for use in a dynamic network

computing environment. A client/ multiple server model is used to implement medium grain

parallel processing. Multi-threaded clients and servers communicate via the NCS RPC

facilities. The major design issues addressed are run time server selection, fault handling,

extensibility, and performance. A few cases of applications were analyzed and their suitability

for use in this new architecture is discussed.

The underlying Network Computing Architecture is described and compared to other

current research and commercial network computing environments. The enhancements

developed for use in this project were inspired by the solutions presented in these other

distributed computing architectures. In particular, the concept of evaluating servers based on

their expected throughput was imported from the Enterprise project. Also, the chore queue can

be thought of as a sort of tuple space which is accessible to all client tasks. In comparison to

Athena, this architecture has better support for parallel processing through the use of CPS.

Server "bids" are accepted with much less traffic than that required in Enterprise since no

broadcast messages are involved and the client can make its server selection decisions based on

one LLBD query. This architecture is also much more flexible than the Emerald system since

all participating programs running on a node are not mapped into the same virtual address space

though one client and all of its constituent tasks are at present mapped to the same virtual

address space. More than one client may be active with its own address space. The biggest

advantage the architecture offers over PAX is better crash detection and error recovery. In this

case, the NCS protocol will detect a communication failure due to lack of ping responses; in

PAX, a client may simply deadlock while waiting for a tuple to arrive from a server which has

long since crashed. ISIS offers the virtual synchronicity feature which ought to make the

www.manaraa.com

61

design and implementation of a distributed processing system simpler. One big disadvantage

of this architecture is the fact that the interfaces to access NCS and parallel processing are not

as clean as they might be. A developer must do more than make a few library calls to invoke

the power available in the network. One shortcoming present in all of these systems is the lack

of decent development tools which would guide a developer in making decisions on program

partitioning, interface sizing, server placement, etc.

This project met its goal of creating an extensible application architecture which adapts to

run time conditions. This architecture has been shown to be a good environment for some

classes of separable problems though as we have seen, certainly not all.

It is true that a single threaded RPC is relatively easy to implement and understand. Its

major deficiency is that it has high overhead costs. For many single threaded applications, the

entire program should be moved to the server and perform all local procedure calls to avoid the

RPC cost. Difficulty arises when considering multithreaded RPC because there must be some

mechanism to circumvent the RPC blocking semantics. Additionally, the job must be

partitioned over a server pool which may have vastly different computation speeds. In this

architecture, the Domain/OS CPS package was used to define multiple client threads. Each

thread initiated a RPC to its own server. The disparate server computation capacities was

addressed by implementing a: self scheduling algorithm so that the servers can be assigned new

work as they become ready.

Not all compute intensive problems can be solved with a network computing model.

Message passing models like RPC appear to be entirely the wrong approach for UNPACK

because of the data dependencies and the data communication requirements. A shared memory

multiprocessor model is much more suitable for the current LINP ACK algorithms and other

functions which have short processing time and long argument lists.

www.manaraa.com

62

This project did not set out to design new algorithms and sometimes this is exactly the

approach that should be taken. The idea of plugging existing programs into a parallel

architecture is often impractical; the original design may not accommodate any method other

than sequential processing. There is no substitute for better algorithms; any architecture cannot

exploit parallelism which simply does not exist.

Future Work

Additional research is needed to develop a software tool set which facilitates distributed

system development. Jordan points out the need for automated analyzers which can perfom1

global algorithm analysis instead of limiting the scope to a subroutine [13]. His concept must

be expanded from a multi-processor parallel processing environment to be applicable in a

network computing architecture.

Within the realm of the architecture developed for this project, there is ample opportunity

for continued development. Work remains to be done in the area of pre-loading parameter

values which would be retained in the server over a set of chores thereby reducing the data

communication requirements. A pre-compiler to automate the initNCS and doPar code

modifications which are required to integrate new functions into the architecture should be

developed. Also, the vendor MIPS ratings may not accurately reflect the anticipated application

computation profile. Thus the performance metric should be based on the execution time

required for representative "real" CNDE application programs. Suitable CNDE numerical

modeling programs should be fully integrate into this architecture and tested.

Outside the Apollo domain, this application architecture can be extended to include clients

and servers on heterogeneous platforms. Preliminary investigation performed with DEC

workstations in the CNDE environment demonstrated that production release NIDL and the

NCS run-time library from the two vendors are not entirely compatible. Interoperability should

continue to be investigated as future production releases become available. One area in

www.manaraa.com

63

particular which needs attention is a CPS like mechanism to suppon multiple servers from a

client running in a standard UNIX environment.

Beyond the application architecture developed here, some representative CNDE

applications should be implemented in some of the other network programming paradigms

such as ISIS to compare ease of integration, flexibility, and performance.

www.manaraa.com

64

BIBLIOGRAPHY

[1] Apollo Computer, Inc. Concurrent Programming Support (CPS) Reference. 1st ed.
Chelmsford, MA: Apollo Computer, Inc., 1987.

[2] Apollo Computer, Inc. Network Computing Architecture CNCA) Protocol
Specifications. pt ed. Chelmsford, MA: Apollo Computer, Inc., 1989.

[3] Apollo Computer, Inc. Network Interface Definition Language (NlDL): Apollo Binary
Release Document. Software Release 1.5.1. Chelmsford, MA: Apollo Computer,
Inc., 1990.

[4] Apollo Computer, Inc. Programming with Domain/OS Calls. Revision AOO.
Chelmsford, MA: Apollo Computer, Inc., 1988.

[5] Birman, K., Cooper, R., and Marzullo, K .. "ISIS and META Projects: Progress
Report." Technical Report TR90-1103. Ithaca, NY: Department of Computer
Science; Cornell University, February 22, 1990.

[6] Birrell, A. D., and Nelson, B. J. "Implementing Remote Procedure Calls." ACM
Transactions on Computer Systems 2 (February 1984): 39-59.

[7] Carriero, N., and Gelernter, D. "Linda In Context." Communications of the ACM 32
(April 1989): 444-458.

[8] Champine, G.A., Geer, Jr., D.E., and Run, W. N. "Project Athena as a Distributed
Computer System." Computer 23 (September 1990): 40-50.

[9] Curry, D.A. Using Con the UNIX System: A Guide to System Programming.
Sebastopol, CA: O'Reilly & Associates, 1989.

[10] Dunlap, K. J., and Karels, M.J. "Name Server Operations Guide for BIND Release
4.8." Berkeley, CA: Computer Systems Research Group; Computer Science
Division; Department of Electrical and Computer Sciences, University of California.,
1988.

[11] Francisco, C. R., and LaBossiere, D. "A Method for Estimating Application
Performance in a Network Computing Environment Using the UNPACK
Benchmark as an Example." Chelmsford, MA: Apollo Computer, Inc., May 17,
1988.

[12] Hewlett-Packard, Inc. "Task Broker for Networked Environments based on the UNIX
Operating System". Technical Data Sheet 5952-1192. Rolling Meadows, IL:
Hewlett-Packard Co., 1989.

[13] Jordan, H. F. "HEP Architecture, Programming and Performance." In Parallel MIMD
Computation: The HEP Supercomputer and its Applications edited by J. S. Kowalik,
1-40. Cambridge, MA: The MIT Press, 1985.

www.manaraa.com

65

[14] Jul, E., Levy, H., Hutchinson, N., and Black, A. "Fine-Grained Mobility in the
Emerald System." ACM Transactions on Computer Systems 6 (February 1988):
109-133.

[15] Kong, M., Dineen, T. H., Leach, P. J., Martin, E. A., Mishkin, N. W., Pato, J. N.,
and Wyant, G. L. Network Computing System Reference Manual. 1st ed.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1990.

[16] Leichter, J. VAX Linda-C Users's Guide. Order Number VLN-UG-101. Boston, MA:
VXM Technologies, Inc., 1990.

[17] Malone, T. W., Fikes, R. E., Grant, K. R., and Howard, M. T. "Enterprise: A Market­
Like Task Scheduler for Distributed Computing Environments." In The Ecology of
Computation, edited by B. A. Huberman, 177-206. Amsterdam, The Netherlands:
Elsevier Science Publishers B.V., 1988.

[18] McQuillan, J. M., Richer, I., and Rosen, E. C. "The New Routing Algorithm for the
ARPANET." IEEE Transactions on Communications COM-28 (May 1980): 771-
719.

[19] Mockapetris, P. "Domain Names- Implementation and Specification." Internet Request
for Comment 1035. Network Information Center, SRI International, Menlo Park,
CA, November 1987.

[20] Ottenstein, K.J. "A Brief Survey of Implicit Parallelism Detection." In Parallel MIMD
Computation: The HEP Supercomputer and its Applications edited by J. S. Kowalik,
93-122. Cambridge, MA: The MIT Press, 1985.

[21] Stevens, W. R. UNIX Network Programming. pt ed. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1990.

[22] van der Leeden, R. "First Experiences with Series 10000 Concurrent Fortran (HP-CF)"
The Apollo Systems Division SE Newsletter 6 (July 9,1990) Chelmsford, MA:
Apollo Computer, Inc., 1990.

[23] VXM Technologies, Inc. PAX-1 "Creating a Network Supercomputer". Product
Announcement Bulletin. Boston, MA: VXM Technologies, Inc., 1989.

[24] Zahn, L., Dineen, T. H., Leach, P. J., Martin, E. A., Mishkin, N. W., Pato, J. N., and
Wyant, G. L. Network Computing Architecture. 1st ed. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1990.

www.manaraa.com

66

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my major professor Dr. Doug Jacobson

for his encouragement, patience, and understanding. Program of Study Committee members

Dr. Lester Schmerr and Dr. Johnny Wong deserve thanks for their contributions of time and

guidance. I would also like to thank Dr. Schmerr for giving me the opportunity to conduct

research at the Center for Nondestructive Evaluation.

I would like to thank my colleagues and fellow graduate students at the Center for

Nondestructive Evaluation for their friendship and our many enlightened conversations. Steve

Nugen provided many useful references and valuable insight into a variety of computing

issues.

This thesis would not have been possible without the support of my family. l wish to

thank my parents for teaching me the value of setting and pursuing one's goals. I also want to

thank my wife, Susan for her tolerance and support especially during the trying times of the

final few months.

This research was supported by the Iowa State University Center for Nondestructive

Evaluation under NIST contract number 704 25 25.

	1990
	Dynamic server selection in a multithreaded network computing environment
	Joseph F. Stapleton
	Recommended Citation

	Dynamic server selection in a multithreaded network computing environment

